Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhanced Genetic Algorithm-Based Fuzzy Multiobjective Strategy to Multiproduct Batch Plant Design

  • Chapter
Analysis and Design of Intelligent Systems using Soft Computing Techniques

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

  • 2027 Accesses

Abstract

The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must form an integral part of the design problem. This work proposes an alternative treatment of the imprecision (demands) by using fuzzy concepts. In this study, we introduce a new approach to the design problem based on a multi-objective genetic algorithm, taking into account simultaneously maximization of the net present value \(N\tilde{P}V\) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage. Besides, a hybrid selection method Pareto rank-tournament was proposed and showed a better performance than the classical Goldberg’s wheel, systematically leading to a higher number of non-dominated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar-Lassere, A., et al.: Modélisation des imprécisions de la demande en conception optimale multicritère d’ateliers discontinus. In: Proceedings of the SFGP (Société Français de Génie de Procédés), Toulouse, France (2005)

    Google Scholar 

  2. Cao, D., Yuan, X.: Optimal design of batch plants with uncertain demands considering switch over of operating modes of parallel units. Ind. Eng. Chem., pp. 4616-4625 (2002)

    Google Scholar 

  3. Huang, H., Wang, W.F.: Fuzzy decision-making design of chemical plant using mixed-integer hybrid differential evolution. Computers & Chemical Engineering  26(Issue 12, 15), 1649–1660 (2002)

    Google Scholar 

  4. Liou, T.S., Wang, M.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets System 50, 247 (1992)

    Article  MathSciNet  Google Scholar 

  5. Modi, A.K., Karimi, I.A.: Design of multiproduct batch processes with finite intermediate storage. Computer and Chemical Engineering 13, 127–138 (1989)

    Article  Google Scholar 

  6. Shah, N., Pantelides, C.C.: Design of multipurpose batch plants with uncertain production requirements. Ind. Eng. Chem. Res., pp. 1325-1337 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aguilar-Lasserre, A.A., Azzaro-Pantel, C., Pibouleau, L., Domenech, S. (2007). Enhanced Genetic Algorithm-Based Fuzzy Multiobjective Strategy to Multiproduct Batch Plant Design. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics