Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mining Associations for Interface Design

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4481))

Included in the following conference series:

Abstract

Consumer research has indicated that consumers use compensatory and non-compensatory decision strategies when formulating their purchasing decisions. Compensatory decision-making strategies are used when the consumer fully rationalizes their decision outcome whereas non-compensatory decision-making strategies are used when the consumer considers only that information which has most meaning to them at the time of decision. When designing online shopping support tools, incorporating these decision-making strategies with the goal of personalizing the design of the user interface may enhance the overall quality and satisfaction of the consumer’s shopping experiences. This paper presents work towards this goal. The authors describe research that refines a previously developed procedure, using techniques in cluster analysis and rough sets, to obtain consumer information needed in support of designing customizable and personalized user interface enhancements. The authors further refine their procedure by examining and evaluating techniques in traditional association mining, specifically conducting experimentation using the Eclat algorithm for use with the authors’ previous work. A summary discussing previous work in relation to the new evaluation is provided. Results are analyzed and opportunities for future work are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ha, S.H.: Helping Online Customers Decide Through Web Personalization. IEEE Intelligent Systems 17(6), 34–43 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive Consumer Choice Processes. Journal of Consumer Research 25(3), 187–217 (1998)

    Article  Google Scholar 

  3. Maciag, T.J., Hepting, D.H., Slezak, D.: Consumer Modelling in Support of Interface Design. In: Proc. IEEE International Conference on Hybrid Information Technology, vol. 2, pp. 153–160 (2006)

    Google Scholar 

  4. Simon, H.A.: A Behavioral Model of Rational Choice. Economics 69, 99–118 (1955)

    Google Scholar 

  5. Hsee, C.K., Leclerc, F.: Will Products Look More Attractive When Presented Separately or Together? Journal of Consumer Research 25(2), 175–186 (1998)

    Article  Google Scholar 

  6. Jedetski, J., Adelman, L., Yeo, C.: How Web Site Decision Technology Affects Consumers. IEEE Internet Computing, 72–79 (2002)

    Google Scholar 

  7. Eirinaki, M., Vazirgiannis, M.: Web Mining for Web Personalization. ACM Transaction on Internet Technology 3(1), 1–27 (2003)

    Article  Google Scholar 

  8. Maciag, T., Hepting, D.H., Slezak, D.: Personalizing User Interfaces for Environmental Decision Support Systems. In: Proc. Rough Sets and Soft Computing in Intelligent Agent and Web Technology (2005)

    Google Scholar 

  9. Ester, M., Kießling, W., Holland, S.: Preference Mining: A Novel Approach on Mining User Preferences for Personalized Applications. In: Lavrač, N., et al. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 204–216. Springer, Heidelberg (2003)

    Google Scholar 

  10. Li, C.H., Kit, C.C.: Web Structure Mining for Usability Analysis. In: Proc. IEEE/WIC/ACM Web Intelligence (2005)

    Google Scholar 

  11. Bazan, J.G., Szczuka, M.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)

    Google Scholar 

  12. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  13. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data Engineering 12, 372–390 (2000)

    Article  Google Scholar 

  14. Mahanti, A., Alhajj, R.: Visual Interface for Online Watching of Frequent Itemset Generation in Apriori and Eclat. In: Proc. IEEE International Conference on Machine Learning and Applications (2005)

    Google Scholar 

  15. Ceglar, A., Roddick, J.F.: Association Mining. ACM Computing Surveys 38(2) (2006)

    Google Scholar 

  16. Borgelt, C.: Implementations of Apriori and Eclat. In: Proc. Workshop on Frequent Item Set Mining Implementations (FIMI) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

JingTao Yao Pawan Lingras Wei-Zhi Wu Marcin Szczuka Nick J. Cercone Dominik Ślȩzak

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Maciag, T., Hepting, D.H., Ślȩzak, D., Hilderman, R.J. (2007). Mining Associations for Interface Design. In: Yao, J., Lingras, P., Wu, WZ., Szczuka, M., Cercone, N.J., Ślȩzak, D. (eds) Rough Sets and Knowledge Technology. RSKT 2007. Lecture Notes in Computer Science(), vol 4481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72458-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72458-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72457-5

  • Online ISBN: 978-3-540-72458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics