Abstract
Existing work on scheduling with energy concern has focused on minimizing the energy for completing all jobs or achieving maximum throughput [19,2,7,13,14]. That is, energy usage is a secondary concern when compared to throughput and the schedules targeted may be very poor in energy efficiency. In this paper, we attempt to put energy efficiency as the primary concern and study how to maximize throughput subject to a user-defined threshold of energy efficiency. We first show that all deterministic online algorithms have a competitive ratio at least Δ, where Δ is the max-min ratio of job size. Nevertheless, allowing the online algorithm to have a slightly poorer energy efficiency leads to constant (i.e., independent of Δ) competitive online algorithm. On the other hand, using randomization, we can reduce the competitive ratio to O(logΔ) without relaxing the efficiency threshold. Finally we consider a special case where no jobs are “demanding” and give a deterministic online algorithm with constant competitive ratio for this case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S., Fujiwara, H.: Energy-Efficient Algorithms for Flow Time Minimization. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633. Springer, Heidelberg (2006)
Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: Proc. FOCS, pp. 520–529 (2004)
Bansal, N., Pruhs, K.: Speed scaling to manage temperature. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 460–471. Springer, Heidelberg (2005)
Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc. SODA, pp. 805–813 (2007)
Brooks, D.M., et al.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)
Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. SPAA, pp. 190–196 (2006)
Chan, H.-L., et al.: Energy efficient online deadline scheduling. In: Proc. SODA, pp. 795–804 (2007)
Goldman, S.A., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. J. Algorithms 34(2), 370–389 (2000)
Grunwald, D., et al.: Policies for dynamic clock scheduling. In: OSDI, pp. 73–86 (2000)
Irani, S., Gupta, R.K., Shukla, S.: Algorithms for power savings. In: Proc. SODA, pp. 37–46 (2003)
Irani, S., Pruhs, K.: Algorithmic problems in power managment. SIGACT News 32(2), 63–76 (2005)
Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage processors. ACM Transactions on Embedded Computing Systems 4(1), 211–230 (2005)
Yao, F.F., Li, M., Liu, B.J.: Min-Energy Voltage Allocation for Tree-Structured Tasks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Heidelberg (2005)
Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. Comput. 35(3), 658–671 (2005)
Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: SOSP, pp. 89–102 (2001)
Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best resonse for your erg. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 15–25. Springer, Heidelberg (2004)
Pruhs, K.R., van Stee, R., Uthaisombut, P.: Speed Scaling of Tasks with Precedence Constraints. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 307–319. Springer, Heidelberg (2006)
Weiser, M., et al.: Scheduling for reduced CPU energy. In: OSDI, pp. 13–23 (1994)
Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. FOCS, pp. 374–382 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chan, J.WT., Lam, TW., Mak, KS., Wong, P.W.H. (2007). Online Deadline Scheduling with Bounded Energy Efficiency. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-72504-6_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72503-9
Online ISBN: 978-3-540-72504-6
eBook Packages: Computer ScienceComputer Science (R0)