Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Online Deadline Scheduling with Bounded Energy Efficiency

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

Existing work on scheduling with energy concern has focused on minimizing the energy for completing all jobs or achieving maximum throughput [19,2,7,13,14]. That is, energy usage is a secondary concern when compared to throughput and the schedules targeted may be very poor in energy efficiency. In this paper, we attempt to put energy efficiency as the primary concern and study how to maximize throughput subject to a user-defined threshold of energy efficiency. We first show that all deterministic online algorithms have a competitive ratio at least Δ, where Δ is the max-min ratio of job size. Nevertheless, allowing the online algorithm to have a slightly poorer energy efficiency leads to constant (i.e., independent of Δ) competitive online algorithm. On the other hand, using randomization, we can reduce the competitive ratio to O(logΔ) without relaxing the efficiency threshold. Finally we consider a special case where no jobs are “demanding” and give a deterministic online algorithm with constant competitive ratio for this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S., Fujiwara, H.: Energy-Efficient Algorithms for Flow Time Minimization. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: Proc. FOCS, pp. 520–529 (2004)

    Google Scholar 

  3. Bansal, N., Pruhs, K.: Speed scaling to manage temperature. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 460–471. Springer, Heidelberg (2005)

    Google Scholar 

  4. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc. SODA, pp. 805–813 (2007)

    Google Scholar 

  5. Brooks, D.M., et al.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

    Article  Google Scholar 

  6. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. SPAA, pp. 190–196 (2006)

    Google Scholar 

  7. Chan, H.-L., et al.: Energy efficient online deadline scheduling. In: Proc. SODA, pp. 795–804 (2007)

    Google Scholar 

  8. Goldman, S.A., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. J. Algorithms 34(2), 370–389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grunwald, D., et al.: Policies for dynamic clock scheduling. In: OSDI, pp. 73–86 (2000)

    Google Scholar 

  10. Irani, S., Gupta, R.K., Shukla, S.: Algorithms for power savings. In: Proc. SODA, pp. 37–46 (2003)

    Google Scholar 

  11. Irani, S., Pruhs, K.: Algorithmic problems in power managment. SIGACT News 32(2), 63–76 (2005)

    Article  Google Scholar 

  12. Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage processors. ACM Transactions on Embedded Computing Systems 4(1), 211–230 (2005)

    Article  Google Scholar 

  13. Yao, F.F., Li, M., Liu, B.J.: Min-Energy Voltage Allocation for Tree-Structured Tasks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Heidelberg (2005)

    Google Scholar 

  14. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. Comput. 35(3), 658–671 (2005)

    Article  MathSciNet  Google Scholar 

  15. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: SOSP, pp. 89–102 (2001)

    Google Scholar 

  16. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best resonse for your erg. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 15–25. Springer, Heidelberg (2004)

    Google Scholar 

  17. Pruhs, K.R., van Stee, R., Uthaisombut, P.: Speed Scaling of Tasks with Precedence Constraints. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 307–319. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Weiser, M., et al.: Scheduling for reduced CPU energy. In: OSDI, pp. 13–23 (1994)

    Google Scholar 

  19. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. FOCS, pp. 374–382 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, J.WT., Lam, TW., Mak, KS., Wong, P.W.H. (2007). Online Deadline Scheduling with Bounded Energy Efficiency. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics