Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Phase Transition of Multivariate Polynomial Systems

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

A random multivariate polynomial system with more equations than variables is likely to be unsolvable. On the other hand if there are more variables than equations, the system has at least one solution with high probability. In this paper we study in detail the phase transition between these two regimes, which occurs when the number of equations equals the number of variables. In particular the limiting probability for no solution is 1/e at the phase transition, over a prime field.

We also study the probability of having exactly s solutions, with s ≥ 1. In particular, the probability of a unique solution is asymptotically 1/e if the number of equations equals the number of variables. The probability decreases very rapidly if the number of equations increases or decreases.

Our motivation is that many cryptographic systems can be expressed as large multivariate polynomial systems (usually quadratic) over a finite field. Since decoding is unique, the solution of the system must also be unique. Knowing the probability of having exactly one solution may help us to understand more about these cryptographic systems. For example, whether attacks should be evaluated by trying them against random systems depends very much on the likelihood of a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biryukov, A., De Cannière, C.: Block ciphers and systems of quadratic equations. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 274–289. Springer, Heidelberg (2003)

    Google Scholar 

  2. Beame, P., et al.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. 73, 1–26 (1996)

    Article  MATH  Google Scholar 

  3. Buss, S., et al.: Proof complexity in algebraic systems and bounded depth Frege systems with modular counting. Comput. Complex. 6, 256–298 (1997)

    Article  Google Scholar 

  4. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. 28th Ann. ACM Symp. Theory Comput., pp. 174–183 (1996)

    Google Scholar 

  5. Courtois, N., et al.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Courtois, N., Pierpzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Dickson, L.E.: Determination of the structure of all linear homogeneous groups in a Galois field which are defined by a quadratic invariant. Amer. J. Math. 21, 193–256 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friegut, E.: Necessary and sufficient conditions for sharp thresholds of graph properties and the k-SAT problem. Amer. J. Math. 12, 1017–1054 (1999)

    Article  Google Scholar 

  9. Franco, J.: Results related to threshold phenomena research in satisfiability: lower bounds. Theoret. Comput. Sci. 265(1-2), 147–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franco, J.: Typical case complexity of satisfiability algorithms and the threshold phenomenon. Disc. Appl. Math. 153(1-3), 89–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gerth III, F.: Limit probabilities for coranks of matrices over GF(q). Lin. Multilin. Alg. 19, 79–93 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Håstad, J., Phillips, S., Safra, S.: A well-characterized approximation problem. Inf. Proc. Lett. 47(6), 301–305 (1993)

    Article  MATH  Google Scholar 

  13. Jordan, C.: Sur la forme canonique des congruences du second degré et le nombre de leurs solutions. J. Math. Pures. Appls. 17(2), 1093–1095 (1872), Abstract of results in C. R. Acad. Sci. Paris, vol. 74, pp. 1093–1095 (1872)

    Google Scholar 

  14. Pitassi, T.: Algebraic propositional proof systems. In: Descriptive Complexity and Finite Models. DIMACS Ser. Discrete Math. Thoret. Comput. Sci., vol. 31, pp. 215–244 (1997)

    Google Scholar 

  15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8, 4120–4421 (1979)

    Article  MathSciNet  Google Scholar 

  16. Woods, A.R.: Unsatisfiable systems of equations, over a finite field. In: Proc. 39th Ann. Symp. Found. Comput. Sci., pp. 202–211 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fusco, G., Bach, E. (2007). Phase Transition of Multivariate Polynomial Systems. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics