Abstract
Spectral estimation has important applications to microarray time series analysis. For unevenly sampled data, a common spectral estimation technique is to use the Lomb-Scargle algorithm. In this paper, we introduce a new reconstruction algorithm and singular spectrum analysis (SSA) method to deal with unevenly sampled microarray time series. The new reconstruction method is based on signal reconstruction technique in aliased shift-invariant signal spaces and a direct implemental algorithm is developed based on the B-spline basis. We experiments on simulated noisy signals and gene expression profiles show different effects for our designed three methods. The three methods are based on our presented reconstruction algorithm, SSA, classical FFT periodogram method and Lomb-Scargle periodogram method.
Chapter PDF
Similar content being viewed by others
Keywords
References
Hayes, M.H.: Statistical digital signal processing and modeling. John Wiley and Sons, Chichester (1996)
Kay, S.M., Marple Jr, S.L.: Spectrum analysis-A modern perspective. Proceeding of IEEE 69(11), 1380–1418 (1981)
Chu, S., DeRisi, J., et al.: The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863–14868 (1998)
Spellman, T.S., Sherlock, G., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisia by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998)
Lu, X., Zhang, W., Qin, Z.H., Kwast, K.E., Liu, J.S.: Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucleic Acids Research 32(2), 447–455 (2004)
Ruf, T.: The Lomb-Scargle Periodogram in biological rhythm research: Analysis of incomplete and unequally spaced time-series. Biological Rhythm Research 30, 178–201 (1999)
Bohn, A., Hinderlich, S., Hutt, M.T., Kaiser, F., Luttge, U.: Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations. Biol. Chem. 384, 721–728 (2003)
Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Boca Raton (2001)
Benedetto, J.J.: Irregular sampling and frames. In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 445–507 (1992)
Chen, W., Han, B., Jia, R.Q.: Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces. IEEE Trans. Signal. Processing 53(5), 1927–1933 (2005)
Chen, W., Han, B., Jia, R.Q.: On simple oversampled A/D conversion in shift-invariant spaces. IEEE Trans. Inform. Theory 51(2), 648–657 (2005)
Chui, C.K.: An introduction to Wavelet. Academic Press, New York (1992)
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
Ericsson, S., Grip, N.: An analysis method for sampling in shift-invariant spaces. Int. J. Wavelet. Multi. Information. Processing 3(3), 301–319 (2005)
Goh, S.S., Ong, I.G.H.: Reconstruction of bandlimited signals from irregular samples. Signal. Processing 46(3), 315–329 (1995)
Jia, R.Q.: Shift-invariant spaces and linear operator equations. Israel Math. J. 103, 259–288 (1998)
Lei, J.J., Jia, R.Q., Cheney, E.W.: Approximation from shift-invariant spaces by integral operators. SIAM J. Math. Anal. 28(2), 481–498 (1997)
Liu, Y.: Irregular sampling for spline wavelet subspaces. IEEE Trans. Information Theory 42(2), 623–627 (1996)
Liu, Y., Walter, G.G.: Irregular sampling in wavelet subspaces. J. Fourier. Anal. Appl. 2(2), 181–189 (1995)
Xian, J., Lin, W.: Sampling and reconstruction in time-warped spaces and their applications. Appl. Math. Comput. 157, 153–173 (2004)
Xian, J., Luo, S.P., Lin, W.: Weighted sampling and signal reconstruction in spline subspaces. Signal. Processing 86(2), 331–340 (2006)
Yeung, L.K., Szeto, L.K., Liew, A.W.C., Yan, H.: Dominant spectral component analysis for transcriptional regulations using microarray time-series data. Bioinformatics 20(5), 742–749 (2004)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Schumarker, L.L.: Spline functions: Basic Theory. Wiley Interscience, Hoboken (1981)
Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys Space Science 39, 447–462 (1976)
Fisher, R.A.: Tests of significance in Harmonic Analysis. Proceedings of the Royal Society of London, Series A 125, 54–59 (1929)
Davis, H.T.: The Analysis of Economic Time Series. Principia Press, Bloomington (1941)
Priestley, M.B.: Spectral Analysis and Time Series. Academic Press, San Diego (1981)
Oliva, A., Rosebrock, A., Ferrezuelo, F., et al.: The cell cycle-regulated genes of Schizosaccharomyces pombe. Plos Biology 3(7), 1239–1260 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Xian, J., Wang, J., Dai, DQ. (2007). Detecting Periodically Expression in Unevenly Spaced Microarray Time Series. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72584-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-72584-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72583-1
Online ISBN: 978-3-540-72584-8
eBook Packages: Computer ScienceComputer Science (R0)