Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Including the Past in ‘Topologic’

  • Conference paper
Logical Foundations of Computer Science (LFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4514))

Included in the following conference series:

  • 537 Accesses

Abstract

In this paper, we extend Moss and Parikh’s topo-logical view of knowledge. We incorporate a further modality, denoted P, into the original system. This operator describes the increase of sets. Regarding the usual logic of knowledge, P corresponds to no learning of agents. In the context of ‘topologic’, however, P represents the reverse effort operator and is related to the past therefore. It is our objective to prove nice properties of the accompanying logic like soundness and completeness with respect to the intended class of structures, or decidability. To this end, we take up a hybrid logic point of view, among other things. This not only yields the desired results, but also has some interesting consequences with regard to applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Theoretical Aspects of Reasoning about Knowledge (TARK 1992), Los Altos, CA, pp. 95–105. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  2. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Polos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer, Heidelberg (1994)

    Google Scholar 

  3. Georgatos, K.: Knowledge on treelike spaces. Studia Logica 59, 271–301 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Heinemann, B.: Topological Modal Logics Satisfying Finite Chain Conditions. Notre Dame Journal of Formal Logic 39, 406–421 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces. Studia Logica 71, 1–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aiello, M., Pratt-Hartmann, I., van Benthem, J.: The logic of space (To appear), See URL, http://dit.unitn.it/~aiellom/hsl/

  7. Heinemann, B.: Temporal Aspects of the Modal Logic of Subset Spaces. Theoretical Computer Science 224, 135–155 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heinemann, B.: Linear tense logics of increasing sets. Journal of Logic and Computation 12, 583–606 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

    Google Scholar 

  10. Halpern, J.Y., van der Meyden, R., Vardi, M.Y.: Complete Axiomatizations for Reasoning about Knowledge and Time. SIAM Journal on Computing 33, 674–703 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinemann, B.: Regarding overlaps in ‘topologic’. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic 6, pp. 259–277. College Publications, London (2006)

    Google Scholar 

  12. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Goldblatt, R.: Logics of Time and Computation, 2nd edn. CSLI Lecture Notes, vol. 7. Center for the Study of Language and Information, Stanford, CA (1992)

    Google Scholar 

  15. Heinemann, B.: Some spatial and spatio-temporal operators derived from the topological view of knowledge. In: Wilson, D., Sutcliffe, G. (eds.) Proceedings 20th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2007. AAAI Press, Menlo Park, To appear (2007)

    Google Scholar 

  16. Spaan, E.: Complexity of Modal Logics. PhD thesis, ILLC, Universiteit van Amsterdam (1993)

    Google Scholar 

  17. Heinemann, B.: A hybrid logic for reasoning about knowledge and topology. Under review for journal publication (2005), For a preliminary version see URL, http://www.informatik.fernuni-hagen.de/thi1/ber.ps

  18. Heinemann, B.: A two-sorted hybrid logic including guarded jumps. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic 5, pp. 73–92. King’s College Publications, London (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei N. Artemov Anil Nerode

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Heinemann, B. (2007). Including the Past in ‘Topologic’. In: Artemov, S.N., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2007. Lecture Notes in Computer Science, vol 4514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72734-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72734-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72732-3

  • Online ISBN: 978-3-540-72734-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics