Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weighted Distributed Systems and Their Logics

  • Conference paper
Logical Foundations of Computer Science (LFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4514))

Included in the following conference series:

Abstract

We provide a model of weighted distributed systems and give a logical characterization thereof. Distributed systems are represented as weighted asynchronous cellular automata. Running over directed acyclic graphs, Mazurkiewicz traces, or (lossy) message sequence charts, they allow for modeling several communication paradigms in a unifying framework, among them probabilistic shared-variable and probabilistic lossy-channel systems. We show that any such system can be described by a weighted existential MSO formula and, vice versa, any formula gives rise to a weighted asynchronous cellular automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baier, C., Größer, M.: Recognizing omega-regular languages with probabilistic automata. In: Proceedings of LICS 2005, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  2. Bollig, B.: On the expressiveness of asynchronous cellular automata. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 528–539. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Büchi, J.: Weak second order arithmetic and finite automata. Z. Math. Logik, Grundlag. Math. 5, 66–72 (1960)

    Article  Google Scholar 

  4. Culik, K., Kari, J.: Image compression using weighted finite automata. Computer and Graphics 17(3), 305–313 (1993)

    Article  Google Scholar 

  5. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)

    Google Scholar 

  6. Droste, M., Gastin, P.: The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Inform. and Comp. 153, 47–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 513–525. Springer, Heidelberg (2005)

    Google Scholar 

  8. Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. Theoret. Comp. Sc. 247(1-2), 1–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theoret. Comp. Sc. 366, 228–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–52 (1961)

    Article  MathSciNet  Google Scholar 

  12. Jesi, S., Pighizzini, G., Sabadini, N.: Probabilistic asynchronous automata. Mathematical Systems Theory 29(1), 5–31 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Kuich, W.: Semirings and Formal Power Series. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. 1, pp. 609–677. Springer, Heidelberg (1997)

    Google Scholar 

  14. Kuske, D.: Emptiness is decidable for asynchronous cellular machines. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 536–551. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Kuske, D.: Weighted asynchronous cellular automata. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 684–695. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Mäurer, I.: Weighted picture automata and weighted logics. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 313–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)

    MathSciNet  Google Scholar 

  19. Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the EATCS 27, 56–67 (1985)

    Google Scholar 

  20. Schnoebelen, P.: The verification of probabilistic lossy channel systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 445–465. Springer, Heidelberg (2004)

    Google Scholar 

  21. Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique Théorique et Applications 21 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei N. Artemov Anil Nerode

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bollig, B., Meinecke, I. (2007). Weighted Distributed Systems and Their Logics. In: Artemov, S.N., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2007. Lecture Notes in Computer Science, vol 4514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72734-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72734-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72732-3

  • Online ISBN: 978-3-540-72734-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics