Abstract
We propose a variational approach for multi-valued velocity field estimation in transparent sequences. Starting from existing local motion estimators, we show a variational model for integrating in space and time these local estimations to obtain a robust estimation of the multi-valued velocity field. With this approach, we can indeed estimate some multi-valued velocity fields which are not necessarily piecewise constant on a layer: Each layer can evolve according to non-parametric optical flow. We show how our approach outperforms some existing approaches, and we illustrate its capabilities on several challenging synthetic/real sequences.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Oppenheim, A.V.: Superpostion in a class of nonlinear systems. In: IEEE International Convention, New York, USA, pp. 171–177 (1964)
Bergen, J., et al.: Computing two motions from three frames. In: ICCV 90, Osaka, Japan, December 1990, pp. 27–32 (1990)
Burt, P., Hingorani, R., Kolczynski, R.: Mechanisms for isolating component patterns in the sequential analysis of multiple motion. In: IEEE Workshop on Visual Motion, Princeton, NJ, October 1991, pp. 187–193 (1991)
Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and transparency. Journal on Visual Communications and Image Representation 4(4), 324–335 (1993)
Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions. IJCV 12(1), 5–16 (1994)
Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: ICPR 90, vol. 1, pp. 274–278 (1990)
Shizawa, M., Mase, K.: Principle of superposition: a common computational framework for analysis of multiple motion. In: IEEE Workshop on Visual Motion, pp. 164–172 (1991)
Shizawa, M., Mase, K.: A unified computational theory for motion transparency and motion boundaries based on eigenergy analysis. In: CVPR 91, pp. 289–295 (1991)
Liu, H., et al.: Spatio-temporal filters for transparent motion segmentation. In: ICIP 95, pp. 464–468 (1995)
Darrell, T., Simoncelli, E.: Separation of transparent motion into layers using velocity-tuned mechanisms. In: MIT Media Laboratory Vision and Modeling Group Technical Report. Number 244 (1993)
Mota, C., et al.: Divide-and-Conquer strategies for estimating multiple transparent motions. In: Jähne, B., et al. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 66–78. Springer, Heidelberg (2007)
Mühlich, M., Aach, T.: A Theory of Multiple Orientation Estimation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 69–82. Springer, Heidelberg (2006)
Stuke, I., et al.: Estimation of multiple motions by block matching. In: 4th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2003), pp. 358–362 (2003)
Stuke, I., et al.: Multiple-motion-estimation by block matching using MRF. ACIS, International Journal of Computer and Information Science (2004)
Auvray, V., Bouthemy, P., Lienard, J.: Motion estimation in x-ray image sequence with bi-distributed transparency. In: ICIP 06, Atlanta, USA (2006)
Fitzpatrick, J.: The existence of geometrical density-image transformations corresponding to object motion. CVGIP 44(2), 155–174 (1988)
Black, M., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. CVGIP: Image Understanding 63(1), 75–104 (1996)
Jepson, A., Black, M.: Mixture models for optical flow computation. In: CVPR 93, pp. 760–761 (1993)
Ju, S., Black, M., Jepson, A.: Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. In: Proceedings of CVPR 96, San Francisco, CA, June 1996, pp. 307–314 (1996)
Black, M., Fleet, D., Yacoob, Y.: Robustly estimating changes in image appearance. Computer Vision and Image Understanding 78, 8–31 (2000)
Weiss, Y., Adelson, E.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: CVPR 96, pp. 321–326 (1996)
Rivera, M., Ocegueda, O., Marroquin, J.L.: Entropy controlled gauss-markov random measure field models for early vision. In: Paragios, N., et al. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 137–148. Springer, Heidelberg (2005)
Ramirez-Manzanares, A., et al.: Multi-valued motion fields estimation for transparent sequences with a variational approach. Technical Report RR-5920, INRIA, (Also, Reporte Técnico CIMAT (CC)I-06-12) (June 2006)
Black, M., Rangarajan, P.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV 19(1), 57–91 (1996)
Ramirez-Manzanares, A., Rivera, M.: Brain nerve boundless estimation by restoring and filtering intra-voxel information in DT-MRI. In: VLSM 03, October 2003, pp. 71–80 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ramírez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F. (2007). A Variational Approach for Multi-valued Velocity Field Estimation in Transparent Sequences. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-72823-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72822-1
Online ISBN: 978-3-540-72823-8
eBook Packages: Computer ScienceComputer Science (R0)