Abstract
Color has plenty of discriminative information that can be used to improve the performance of face recognition algorithms, although it is difficult to use it because of its high variability. In this paper we investigate the use of the quaternion representation of a color image for face recognition. We also propose a new representation for color images based on complex numbers. These two color representation methods are compared with the traditional grayscale and RGB representations using an eigenfaces based algorithm for identity verification. The experimental results show that the proposed method gives a very significant improvement when compared to using only the illuminance information.
Work supported by the Spanish Project DPI2004-08279-C02-02 and the Generalitat Valenciana - Consellería d’Empresa, Universitat i Ciència under an FPI scholarship.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yip, A., Sinha, P.: Contribution of color to face recognition. Perception 31(5), 995–1003 (2002)
Torres, L., Reutter, J.Y., Lorente, L.: The importance of the color information in face recognition. In: ICIP, vol. 3, pp. 627–631 (1999)
Jones III, C., Abbott, A.L.: Color face recognition by hypercomplex gabor analysis. In: FG2006, University of Southampton, UK, pp. 126–131 (2006)
Hamilton, W.R.: On a new species of imaginary quantities connected with a theory of quaternions. In: Proc. Royal Irish Academy, vol. 2, pp. 424–434 (1844)
Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra And Its Applications 251(1-3), 21–57 (1997)
Pei, S., Cheng, C.: A novel block truncation coding of color images by using quaternion-moment preserving principle. In: ISCAS, Atlanta, USA, vol. 2, pp. 684–687 (1996)
Sangwine, S., Ell, T.: Hypercomplex fourier transforms of color images. In: ICIP, Thessaloniki, Greece, vol. 1, pp. 137–140 (2001)
Bihan, N.L., Sangwine, S.J.: Quaternion principal component analysis of color images. In: ICIP, Barcelona, Spain, vol. 1, pp. 809–812 (2003)
Chang, J.-H., Pei, S.-C., Ding, J.J.: 2d quaternion fourier spectral analysis and its applications. In: ISCAS, Vancouver, Canada, vol. 3, pp. 241–244 (2004)
Li, S.Z., Jain, A.K.: 6. In: Handbook of Face Recognition. Springer (2005)
Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, p. 1055. Springer, Heidelberg (2003)
Lee, K., Ho, J., Kriegman, D.: Nine points of light: Acquiring subspaces for face recognition under variable lighting. In: CVPR, vol. 1, pp. 519–526 (2001)
Zhang, L., Samaras, D.: Face recognition under variable lighting using harmonic image exemplars. In: CVPR, vol. 1, pp. 19–25 (2003)
Villegas, M., Paredes, R.: Comparison of illumination normalization methods for face recognition. In: COST 275, University of Hertfordshire, UK, pp. 27–30 (2005)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: CVPR, Hawaii, pp. 586–591 (1991)
Bihan, N.L., Mars, J.: Subspace method for vector-sensor wave separation based on quaternion algebra. In: EUSIPCO, Toulouse, France (2002)
XM2VTS (CDS00{1,6}), http://www.ee.surrey.ac.uk/Reseach/VSSP/xm2vtsdb
Luettin, J., Maître, G.: Evaluation protocol for the extended M2VTS database (XM2VTSDB). IDIAP-COM 05, IDIAP (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Villegas, M., Paredes, R. (2007). Face Recognition in Color Using Complex and Hypercomplex Representations . In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-72847-4_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72846-7
Online ISBN: 978-3-540-72847-4
eBook Packages: Computer ScienceComputer Science (R0)