Abstract
The challenge of interest point detectors is to find, in an unsupervised way, keypoints easy to extract and at the same time robust to image transformations. In this paper, we present a novel set of saliency features that takes into account the region inhomogeneity in terms of intensity and shape. The region complexity is estimated at real-time by means of the entropy of the grey-level information. On the other hand, shape information is obtained by measuring the entropy of normalized orientations. The normalization step is a key point in this process. We compare the novel complex salient regions with the state-of-the-art keypoint detectors. The new set of interest points shows robustness to a wide set of transformations and high repeatability. Besides, we show the temporal robustness of the novel salient regions in two real video sequences.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kadir, T., Brady, M.: Saliency, Scale and Image Description. Intl. J. of Computer Vision 45(2), 83–105 (2001)
Hall, D., Leibe, B., Schiele, B.: Saliency of Interest Points under Scale Changes. In: Proc. of the British Machine Vision Conference (2002)
Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60, 63–86 (2004)
Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1999)
Neisser, U.: Visual Search. Scientific American 210(6), 94–102 (1964)
Grimson, W.E.L.: From Images To Surfaces: A Computational Study of the Early Human Visual System. MIT Press, Cambridge (1981)
Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (2003)
Fraundorfer, F., Bischof, H.: Detecting Distinguished Regions by Saliency. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 208–215. Springer, Heidelberg (2003)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide baseline Stereo from Maximally Stable Extremal Regions. In: Proc. of the British Machine Vision Conference, vol. 1, pp. 384–393 (2002)
Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. AIM. vol. 36 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Escalera, S., Pujol, O., Radeva, P. (2007). Robust Complex Salient Regions. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-72849-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72848-1
Online ISBN: 978-3-540-72849-8
eBook Packages: Computer ScienceComputer Science (R0)