Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Complex Salient Regions

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

  • 2341 Accesses

Abstract

The challenge of interest point detectors is to find, in an unsupervised way, keypoints easy to extract and at the same time robust to image transformations. In this paper, we present a novel set of saliency features that takes into account the region inhomogeneity in terms of intensity and shape. The region complexity is estimated at real-time by means of the entropy of the grey-level information. On the other hand, shape information is obtained by measuring the entropy of normalized orientations. The normalization step is a key point in this process. We compare the novel complex salient regions with the state-of-the-art keypoint detectors. The new set of interest points shows robustness to a wide set of transformations and high repeatability. Besides, we show the temporal robustness of the novel salient regions in two real video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kadir, T., Brady, M.: Saliency, Scale and Image Description. Intl. J. of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  2. Hall, D., Leibe, B., Schiele, B.: Saliency of Interest Points under Scale Changes. In: Proc. of the British Machine Vision Conference (2002)

    Google Scholar 

  3. Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)

    Google Scholar 

  5. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1999)

    Google Scholar 

  6. Neisser, U.: Visual Search. Scientific American 210(6), 94–102 (1964)

    Article  Google Scholar 

  7. Grimson, W.E.L.: From Images To Surfaces: A Computational Study of the Early Human Visual System. MIT Press, Cambridge (1981)

    Google Scholar 

  8. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)

    Article  Google Scholar 

  9. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (2003)

    Google Scholar 

  10. Fraundorfer, F., Bischof, H.: Detecting Distinguished Regions by Saliency. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 208–215. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust Wide baseline Stereo from Maximally Stable Extremal Regions. In: Proc. of the British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  12. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex. AIM. vol. 36 (2005)

    Google Scholar 

  13. http://ptgrey.com/products/ladybug2/samples.asp

  14. http://www.icc.es

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Escalera, S., Pujol, O., Radeva, P. (2007). Robust Complex Salient Regions. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics