Abstract
In this paper we propose a Bayesian filter for the Kadir Scale Saliency Detector. Such filter is addressed to deal with the main bottleneck of the Kadir detector, which is the scale space search for all pixels in the image. Given some statistical knowledge about images considered, we show that it is possible to discard some points before applying the Kadir detector by using Information Theory and Bayesian Analysis, increasing efficiency with low error. Our method is based on the intuitive idea that homogeneous (not salient) image regions at high scales probably will be also homogeneous at lower scales of scale space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.A.: A Comparison of Affine Region Detectors. International Journal of Computer Vision 65(1–2), 43–72 (2005)
Kadir, T., Brady, M.: Saliency, Scale and Image Description. International Journal of Computer Vision 45(2), 83–105 (2001)
Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, WI, USA, pp. 264–271 (2003)
Oikonomopoulos, A., Patras, I., Pantic, M.: Kernel-based recognition of human actions using spatiotemporal salient points. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, pp. 151–151 (2006)
Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical Edge Detection: Learning and Evaluating Edge Cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 57–74 (2003)
Carneiro, G., Jepson, A.D.: The Distinctiveness, Detectability, and Robustness of Local Image Features. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, pp. 296–301 (2005)
Guilles, S.: Robust Description and Matching of Images, Ph. D. Thesis, University of Oxford (1998)
Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)
Cover, T.M., Thomas, J.S.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)
Cazorla, M., Escolano, F.: Two Bayesian methods for junction classification. IEEE Transactions on Image Processing 12(3), 317–327 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Suau, P., Escolano, F. (2007). Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-72849-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72848-1
Online ISBN: 978-3-540-72849-8
eBook Packages: Computer ScienceComputer Science (R0)