Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

  • 2344 Accesses

Abstract

In this paper we propose a Bayesian filter for the Kadir Scale Saliency Detector. Such filter is addressed to deal with the main bottleneck of the Kadir detector, which is the scale space search for all pixels in the image. Given some statistical knowledge about images considered, we show that it is possible to discard some points before applying the Kadir detector by using Information Theory and Bayesian Analysis, increasing efficiency with low error. Our method is based on the intuitive idea that homogeneous (not salient) image regions at high scales probably will be also homogeneous at lower scales of scale space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.A.: A Comparison of Affine Region Detectors. International Journal of Computer Vision 65(1–2), 43–72 (2005)

    Article  Google Scholar 

  2. Kadir, T., Brady, M.: Saliency, Scale and Image Description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  3. Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, WI, USA, pp. 264–271 (2003)

    Google Scholar 

  4. Oikonomopoulos, A., Patras, I., Pantic, M.: Kernel-based recognition of human actions using spatiotemporal salient points. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, pp. 151–151 (2006)

    Google Scholar 

  5. Konishi, S., Yuille, A.L., Coughlan, J.M., Zhu, S.C.: Statistical Edge Detection: Learning and Evaluating Edge Cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 57–74 (2003)

    Article  Google Scholar 

  6. Carneiro, G., Jepson, A.D.: The Distinctiveness, Detectability, and Robustness of Local Image Features. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, pp. 296–301 (2005)

    Google Scholar 

  7. Guilles, S.: Robust Description and Matching of Images, Ph. D. Thesis, University of Oxford (1998)

    Google Scholar 

  8. Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Google Scholar 

  9. Cover, T.M., Thomas, J.S.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)

    MATH  Google Scholar 

  10. Cazorla, M., Escolano, F.: Two Bayesian methods for junction classification. IEEE Transactions on Image Processing 12(3), 317–327 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Suau, P., Escolano, F. (2007). Exploiting Information Theory for Filtering the Kadir Scale-Saliency Detector. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics