Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Measuring the Applicability of Self-organization Maps in a Case-Based Reasoning System

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

Abstract

Case-Based Reasoning (CBR) systems solve new problems using others which have been previously resolved. The knowledge is composed of a set of cases stored in a case memory, where each one describes a situation in terms of a set of features. Therefore, the size and organization of the case memory influences in the computational time needed to solve new situations. We organize the memory using Self-Organization Maps, which group cases with similar properties into patterns. Thus, CBR is able to do a selective retrieval using only the cases from the most suitable pattern. However, the data complexity may hinder the identification of patterns and it may degrade the accuracy rate. This work analyses the successful application of this approach by doing a previous data complexity characterization. Relationships between the performance and some measures of class separability and the discriminative power of attributes are also found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological variations, and system approaches. IA Communications 7, 39–59 (1994)

    Google Scholar 

  2. Wess, S., Althoff, K.D., Derwand, G.: Using k-d Trees to Improve the Retrieval Step in Case-Based Reasoning. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

    Google Scholar 

  3. Lenz, M., Burkhard, H.D., Brückner, S.: Applying Case Retrieval Nets to Diagnostic Tasks in Technical Domains. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 219–233. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Vernet, D., Golobardes, E.: An Unsupervised Learning Approach for Case-Based Classifier Systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2), 37–42 (2003)

    Google Scholar 

  5. Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory organization: Analysing computational time and soft computing capabilities. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kohonen, T.: Self-Organization and Associative Memory. Series in Information Sciences, vol. 8. Springer, Heidelberg (1989)

    Google Scholar 

  7. Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001. Neural Computing Surveys 3, 1–156 (2003), http://www.cis.hut.fi/research/refs/

    Google Scholar 

  8. Kaski, S., Kangas, J., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neural Computing Surveys 1, 102–350 (1998), http://www.cis.hut.fi/research/refs/

    Google Scholar 

  9. Fornells, A., Golobardes, E., Vilasís, X., Martí, J.: Integration of strategies based on relevance feedback into a tool for the retrieval of mammographic images. In: Corchado, E.S., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 116–124. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Basu, M., Ho, T.K.: Data Complexity in Pattern Recognition. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Transaction on Pattern Analysis and Machine Intelligence 3(24), 289–300 (2002)

    Google Scholar 

  12. Bernadó-Mansilla, E., Ho, T.K.: Domain of competence of XCS classifier system in complexity measurement space. IEEE Transaction Evolutionary Computation 1(9), 82–104 (2005)

    Article  Google Scholar 

  13. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  14. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Bernadó, E., Maciá, N. (2007). Measuring the Applicability of Self-organization Maps in a Case-Based Reasoning System. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics