Abstract
This paper presents a new cooperative-coevolutive algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm promotes a coevolutive environment where each individual represents a radial basis function (RBF) and the entire population is responsible for the final solution. As credit assignment three quality factors are considered which measure the role of the RBFs in the whole RBFN. In order to calculate the application probability of the coevolutive operators a Fuzzy Rule Base System has been used. The algorithm evaluation with different datasets has shown promising results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. on Evolutionary Computation 1(1), 3–17 (1997)
Yu, B., He, X.: Training Radial Basis Function Networks with Differencial Evolution. In: IEEE International Conference on Granular Computing, pp. 369–372 (2006)
Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)
Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Transactions on Systems, Man. and Cybernetics, Part B 35(5), 928–947 (2005)
Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum Associates, Mahwah (1987)
Golub, G., Van Loan, C.: Matrix computations, 3rd edn. J. Hopkins University Press, Baltimore (1996)
González, J., Rojas, I., Ortega, J., Pomares, H., Fernández, F.J., Diaz, A.F.: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks 14(6), 1478–1495 (2003)
Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Basis Functions for Credit Assessment. Applied Intelligence 22(3), 167–181 (2005)
Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)
Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computing 1, 281–294 (1989)
Nabvey, J., Darken, C.J.: Netlab Neural Network Software. http://www.ncrg.aston.ac.uk/netlab
Neruda, R., Kudová, P.: Learning methods for radial basis function networks. Future Generation Computer Systems 21(7), 1131–1142 (2005)
Newrb, Matlab neural networks toolbox
Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)
Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks 9(4), 601–612 (1998)
Potter, M., De Jong, K.: Cooperative Coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)
Powell, M.: Radial basis functions for multivariable interpolation: A review. In: IMA. Conf. on Algorithms for the approximation of functions and data, pp. 143–167 (1985)
Rivera, A.J., Rojas, I., Ortega, J., del Jesús, M.J.: A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(7), 655–668 (2007), doi:10.1007/s00500-006-0128-9
Tian, J., Li, M.-Q., Chen, F.-Z.: A three-phase rbfnn learning algorithm for complex classification. In: International Conf. on Machine Learning and Cybernetics, pp. 4134–4139 (2005)
Topchy, A., Lebedko, O., Miagkikh, V., Kasabov, N.: Adaptive training of radial basis function networks based on co-operative evolution and evolutionary programming. In: Kasabov, N., et al. (eds.) Progress in Connectionist-Based Information Systems, pp. 253–258. Springer, Heidelberg (1998)
Wallace, M., Tsapatsoulis, N., Kollias, S.: Intelligent initialization of resource allocating RBF networks. Neural Networks 18(2), 117–122 (2005)
Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)
Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez-Godoy, M.D., Rivera, A.J., del Jesus, M.J., Rojas, I. (2007). CoEvRBFN: An Approach to Solving the Classification Problem with a Hybrid Cooperative-Coevolutive Algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-73007-1_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73006-4
Online ISBN: 978-3-540-73007-1
eBook Packages: Computer ScienceComputer Science (R0)