Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CoEvRBFN: An Approach to Solving the Classification Problem with a Hybrid Cooperative-Coevolutive Algorithm

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

This paper presents a new cooperative-coevolutive algorithm for the design of Radial Basis Function Networks (RBFNs) for classification problems. The algorithm promotes a coevolutive environment where each individual represents a radial basis function (RBF) and the entire population is responsible for the final solution. As credit assignment three quality factors are considered which measure the role of the RBFs in the whole RBFN. In order to calculate the application probability of the coevolutive operators a Fuzzy Rule Base System has been used. The algorithm evaluation with different datasets has shown promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. on Evolutionary Computation 1(1), 3–17 (1997)

    Article  Google Scholar 

  2. Yu, B., He, X.: Training Radial Basis Function Networks with Differencial Evolution. In: IEEE International Conference on Granular Computing, pp. 369–372 (2006)

    Google Scholar 

  3. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Transactions on Systems, Man. and Cybernetics, Part B 35(5), 928–947 (2005)

    Article  Google Scholar 

  5. Goldberg, D., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  6. Golub, G., Van Loan, C.: Matrix computations, 3rd edn. J. Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. González, J., Rojas, I., Ortega, J., Pomares, H., Fernández, F.J., Diaz, A.F.: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks 14(6), 1478–1495 (2003)

    Article  Google Scholar 

  8. Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Basis Functions for Credit Assessment. Applied Intelligence 22(3), 167–181 (2005)

    Article  Google Scholar 

  9. Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  10. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computing 1, 281–294 (1989)

    Article  Google Scholar 

  11. Nabvey, J., Darken, C.J.: Netlab Neural Network Software. http://www.ncrg.aston.ac.uk/netlab

    Google Scholar 

  12. Neruda, R., Kudová, P.: Learning methods for radial basis function networks. Future Generation Computer Systems 21(7), 1131–1142 (2005)

    Article  Google Scholar 

  13. Newrb, Matlab neural networks toolbox

    Google Scholar 

  14. Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  15. Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks 9(4), 601–612 (1998)

    Article  Google Scholar 

  16. Potter, M., De Jong, K.: Cooperative Coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  17. Powell, M.: Radial basis functions for multivariable interpolation: A review. In: IMA. Conf. on Algorithms for the approximation of functions and data, pp. 143–167 (1985)

    Google Scholar 

  18. Rivera, A.J., Rojas, I., Ortega, J., del Jesús, M.J.: A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(7), 655–668 (2007), doi:10.1007/s00500-006-0128-9

    Google Scholar 

  19. Tian, J., Li, M.-Q., Chen, F.-Z.: A three-phase rbfnn learning algorithm for complex classification. In: International Conf. on Machine Learning and Cybernetics, pp. 4134–4139 (2005)

    Google Scholar 

  20. Topchy, A., Lebedko, O., Miagkikh, V., Kasabov, N.: Adaptive training of radial basis function networks based on co-operative evolution and evolutionary programming. In: Kasabov, N., et al. (eds.) Progress in Connectionist-Based Information Systems, pp. 253–258. Springer, Heidelberg (1998)

    Google Scholar 

  21. Wallace, M., Tsapatsoulis, N., Kollias, S.: Intelligent initialization of resource allocating RBF networks. Neural Networks 18(2), 117–122 (2005)

    Article  Google Scholar 

  22. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series prediction. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)

    Article  Google Scholar 

  23. Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Godoy, M.D., Rivera, A.J., del Jesus, M.J., Rojas, I. (2007). CoEvRBFN: An Approach to Solving the Classification Problem with a Hybrid Cooperative-Coevolutive Algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics