Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-task Neural Networks for Dealing with Missing Inputs

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Abstract

Incomplete data is a common drawback in many pattern classification applications. A classical way to deal with unknown values is missing data estimation. Most machine learning techniques work well with missing values, but they do not focus the missing data estimation to solve the classification task. This paper presents effective neural network approaches based on Multi-Task Learning (MTL) for pattern classification with missing inputs. These MTL networks are compared with representative procedures used for handling incomplete data on two well-known data sets. The experimental results show the superiority of our approaches with respect to alternative techniques.

This work is partially supported by Ministerio de Educación y Ciencia under grant TEC2006-13338/TCM, and by Consejería de Educación y Cultura de Murcia under grant 03122/PI/05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  2. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. John Wiley & Sons, Hoboken (2002)

    MATH  Google Scholar 

  3. Sharpe, P.K., Solly, R.J.: Dealing with missing values in neural network-based diagnostic systems. Neural Computing and Applications 3(2), 73–77 (1995)

    Article  Google Scholar 

  4. Batista, G.E.A.P.A., Monard, M.C.: A study of k-nearest neighbour as an imputation method. In: Abraham, A., del Solar, J.R., Köppen, M. (eds.) HIS. Frontiers in Artificial Intelligence and Applications, vol. 87, pp. 251–260. IOS Press, Amsterdam (2002)

    Google Scholar 

  5. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an EM approach. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in NIPS, vol. 6, pp. 120–127. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  6. García-Laencina, P.J., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R.: Pattern classification with missing values using multitask learning. In: IJCNN, Vancouver, BC, Canada, 16-21 July 2006, pp. 3594–3601. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  7. García-Laencina, P.J., Figueiras-Vidal, A.R., Serrano-García, J., Sancho-Gómez, J.L.: Exploiting multitask learning schemes using private subnetworks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 233–240. Springer, Heidelberg (2005)

    Google Scholar 

  8. Caruana, R.: Multitask Learning. PhD thesis, Carnegie Mellon University (1997)

    Google Scholar 

  9. Silver, D.L.: Selective Transfer of Neural Network Task Knowledge. PhD thesis, University of Western Ontario (2000)

    Google Scholar 

  10. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel methods. Journal of Machine Learning Research 6, 615–637 (2005), http://jmlr.csail.mit.edu/papers/volume6/evgeniou05a

    MathSciNet  Google Scholar 

  11. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

García-Laencina, P.J., Serrano, J., Figueiras-Vidal, A.R., Sancho-Gómez, JL. (2007). Multi-task Neural Networks for Dealing with Missing Inputs. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics