Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Affect and Self-adaptation: Potential Benefits of Valence-Controlled Action-Selection

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

Abstract

Psychological studies have shown that emotion and affect influence learning. We employ these findings in a machine-learning meta-parameter context, and dynamically couple an adaptive agent’s artificial affect to its action-selection mechanism (Boltzmann β). The agent’s performance on two important learning problems is measured. The first consists of learning to cope with two alternating goals. The second consists of learning to prefer a later larger reward (global optimum) for an earlier smaller one (local optimum). Results show that, compared to several control conditions, coupling positive affect to exploitation and negative affect to exploration has several important benefits. In the alternating-goal task, it significantly reduces the agent’s “goal-switch search peak”. The agent finds its new goal faster. In the second task, artificial affect facilitates convergence to a global instead of a local optimum, while permitting to exploit that local optimum. We conclude that affect-controlled action-selection has adaptation benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashby, F.G., Isen, A.M., Turken, U.: A neuropsychological theory of positive affect and its influence on cognition. Psychological Review 106, 529–550 (1999)

    Article  Google Scholar 

  2. Damasio, A.R.: Descartes’ error: Emotion, reason, and the human brain. Gosset/Putnam Press, New York (1994)

    Google Scholar 

  3. Forgas, J.P.: Feeling is believing? The role of processing strategies in mediating affective influences in beliefs. In: Frijda, N., et al. (eds.) Emotions and Beliefs, pp. 108–143. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Phaf, R.H., Rotteveel, M.: Affective modulation of recognition bias. Emotion 15, 309–318 (2005)

    Article  Google Scholar 

  5. Russell, J.A.: Core affect and the psychological construction of emotion. Psychological Review 110, 145–172 (2003)

    Article  Google Scholar 

  6. Dreisbach, G., Goschke, T.: How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology 30, 343–353 (2004)

    Google Scholar 

  7. Rose, S.A., Futterweit, L.R., Jankowski, J.J.: The relation of affect to attention and learning in infancy. Child Development 70, 549–559 (1999)

    Article  Google Scholar 

  8. Craig, S.D., Graesser, A.C., Sullins, J., Gholson, B.: Affect and learning: An exploratory look into the role of affect in learning with Autotutor. Journal of Educational Media 29, 241–250 (2004)

    Google Scholar 

  9. Sutton, R., Barto, A.: Reinforcement learning, An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Csikszentmihalyi, M.: Flow: The psychology of optimal experience. Harper Row, New York (1990)

    Google Scholar 

  11. Custers, R., Aarts, H.: Positive affect as implicit motivator: On the nonconscious operation of behavioral goals. Journal of Personality and Social Psychology 89, 129–142 (2005)

    Article  Google Scholar 

  12. Doya, K.: Metalearning and neuromodulation. Neural Networks 15, 495–506 (2002)

    Article  Google Scholar 

  13. Tyrrell, T.: Computational mechanisms for action selection, PhD thesis. University of Edinburgh (1993)

    Google Scholar 

  14. Avila-Garcia, O., Cañamero, L.: Using hormonal feedback to modulate action selection in a competitive scenario. In: Proceedings of the 8th Intl. Conf. on Simulation of Adaptive Behavior, pp. 243–252 (2004)

    Google Scholar 

  15. Belavkin, R.V.: On relation between emotion and entropy. In: Proceedings of the AISB’04 Symposium on Emotion, Cognition and Affective Computing, Leeds, UK, pp. 1–8 (2004)

    Google Scholar 

  16. Botelho, L.M., Coelho, H.: Information processing, motivation and decision making. In: Proc. 4th International Workshop on Artificial Intelligence in Economics and Management (1998)

    Google Scholar 

  17. Schweighofer, N., Doya, K.: Meta-learning in reinforcement learning. Neural Networks 16, 5–9 (2003)

    Article  Google Scholar 

  18. Hogewoning, E., Broekens, J., Eggermont, J., Bovenkamp, E.G.P.: Strategies for affect-controlled action-selection in Soar-RL. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 501–510. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Broekens, J., Kosters, W.A., Verbeek, F.J. (2007). On Affect and Self-adaptation: Potential Benefits of Valence-Controlled Action-Selection. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics