Abstract
On chip resource distribution is a problem that, due to its complexity, is susceptible to be solved by using artificial intelligence optimization procedures. In this paper, a Hopfield recurrent neural network and a Boltzmann machine are proposed for searching good solutions.
The main challenge of this approach is proposing an energy function to be minimized so it mixes all the problem-related restrictions.
Experimental data shows that we can get good enough solutions in a reasonable time using Hopfield nets or close to the global minimum solutions using Boltzmann machines.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilites. Proceedings of the National Academy of Sciences of the USA 79(8), 2554–2558 (1982)
Bharitkar, S., et al.: Microcode Optimization with Neural Networks. IEEE-NN 10(3), 698 (1999)
Krusne, R.: Chapter 8: Hopfield Networks (2006), available at http://fuzzy.cs.uni-magdeburg.de/studium/nn/txt/folien060615.pdf
Xilinx Inc.: Virtex 2.5V Field Programmable Gate Arrays (2002), available at http://direct.xilinx.com/bvdocs/publications/ds003-2.pdf
Yao, X.: A Review of Evolutionary Artificial Neural Networks. Commonwealth Scientific and Industrial Research Organization, Australia (1992)
Hinton, G.E., Sejnowski, T.J.: A learning Algorithm for Boltzmann Machines. Cognitive Science 9, 147–169 (1985)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Sánchez Jurado, F.J., Santos Pen̈as, M. (2007). Hopfield Neural Network and Boltzmann Machine Applied to Hardware Resource Distribution on Chips. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-73053-8_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73052-1
Online ISBN: 978-3-540-73053-8
eBook Packages: Computer ScienceComputer Science (R0)