Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hopfield Neural Network and Boltzmann Machine Applied to Hardware Resource Distribution on Chips

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Abstract

On chip resource distribution is a problem that, due to its complexity, is susceptible to be solved by using artificial intelligence optimization procedures. In this paper, a Hopfield recurrent neural network and a Boltzmann machine are proposed for searching good solutions.

The main challenge of this approach is proposing an energy function to be minimized so it mixes all the problem-related restrictions.

Experimental data shows that we can get good enough solutions in a reasonable time using Hopfield nets or close to the global minimum solutions using Boltzmann machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilites. Proceedings of the National Academy of Sciences of the USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bharitkar, S., et al.: Microcode Optimization with Neural Networks. IEEE-NN 10(3), 698 (1999)

    Google Scholar 

  3. Krusne, R.: Chapter 8: Hopfield Networks (2006), available at http://fuzzy.cs.uni-magdeburg.de/studium/nn/txt/folien060615.pdf

  4. Xilinx Inc.: Virtex 2.5V Field Programmable Gate Arrays (2002), available at http://direct.xilinx.com/bvdocs/publications/ds003-2.pdf

  5. Yao, X.: A Review of Evolutionary Artificial Neural Networks. Commonwealth Scientific and Industrial Research Organization, Australia (1992)

    Google Scholar 

  6. Hinton, G.E., Sejnowski, T.J.: A learning Algorithm for Boltzmann Machines. Cognitive Science 9, 147–169 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sánchez Jurado, F.J., Santos Pen̈as, M. (2007). Hopfield Neural Network and Boltzmann Machine Applied to Hardware Resource Distribution on Chips. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics