Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing the Map Usage for Indoor Location-Aware Systems

  • Conference paper
Human-Computer Interaction. Interaction Platforms and Techniques (HCI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4551))

Included in the following conference series:

Abstract

Location-aware systems are receiving more and more interest in both academia and industry due to their promising prospective in a broad category of so-called Location-Based-Services (LBS). The map interface plays a crucial role in the location-aware systems, especially for indoor scenarios. This paper addresses the usage of map information in a Wireless LAN (WLAN)-based indoor navigation system. We describe the benefit of using map information in multiple algorithms of the system, including radio-map generation, tracking, semantic positioning and navigation. Then we discuss how to represent or model the indoor map to fulfill the requirements of intelligent algorithms. We believe that a vector-based multi-layer representation is the best choice for indoor location-aware system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Patterson, C.A., Muntz, R.R., Pancake, C.M.: Challenges in location-aware Computing. Pervasive Computing 2, 80–89 (2003)

    Article  Google Scholar 

  2. Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer (1993)

    Google Scholar 

  3. Hightower, J., Borriello, G.: Location System for Ubiquitous Computing. IEEE computer (2001)

    Google Scholar 

  4. Koshima, H., Hoshen, J.: Personal Locator Services Emerge. IEEE Spectrum (2000)

    Google Scholar 

  5. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based User Location and Tracking system. Proceedings of IEEE INFOCOM 2000 2(3), 775–784 (2000)

    Google Scholar 

  6. Wang, H.: Fusion of Information Sources for Indoor Positioning with Field Strength Measurements. Master thesis, Department of Electrical Engineering and Information Technology, TU-München (2005)

    Google Scholar 

  7. Obradovic, D., Lenz, H., Schupfner, M.: Sensor Fusion in Siemens Car Navigation System. In: Proceedings of IEEE Conference on Machine Learning and Signal Processing, São Luis, Brazil (2004)

    Google Scholar 

  8. Obradovic, D., Lenz, H., Schupfner, M.: Fusion of Map and Sensor Data in a Modern Car Navigation System. Journal of VLSI Signal Processing 45, 111–122 (2006)

    Article  Google Scholar 

  9. Wölfle, G., Wahl, R., Wertz, P., Wildbolz, P., Landstorfer, F.: Dominant Path Prediction Model for Indoor Scenarios. German Microwave Conference (GeMIC), Ulm, Germany (2005)

    Google Scholar 

  10. Zarubo, G.V., Huber, M., Kamanger, F.A., Chlamtac, I.: Monte Carlo Sampling Based In-home Location Tracking With Minimal RF Infrastructure Requirements. In: Proceedings of GLOBECOM (2004)

    Google Scholar 

  11. Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D.: WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors. In: proceedings of 4th Workshop on Positioning, Navigation and Communication 2007 (WPNC 2007), Hannover, Germany (2007)

    Google Scholar 

  12. Evennou, F., Marx, F.: Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning. EURASIP Journal on Applied Signal Processing 2006, Article ID 86706, 1–11 (2006)

    Article  Google Scholar 

  13. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data. In: Proceedings of IROS-03 (2003)

    Google Scholar 

  14. Evennou, F., et al.: Map-aided Indoor Mobile Positioning System using Particle Filter. In: Proceedings of WCNC (2005)

    Google Scholar 

  15. Wang, H., Lenz, H., Szabo, A., Hanebeck, U.D., Bamberger, J.: Fusion of Barometric Sensors, WLAN Signals and Building Information for 3-D Indoor/Campus Localization. In: Proceedings of International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2006), S. 426–432, Heidelberg, Germany (2006)

    Google Scholar 

  16. Retscher, G.: Location Determination in Indoor Environments for Pedestrian Navigation. In: Proceedings of IEEE/ION PLANS 2006, San Diego, USA (2006)

    Google Scholar 

  17. Bohn, J., Vogt, H.: Robust Probabilistic Positioning based on High-Level Sensor-Fusion and Map Knowledge. Technical Report, ETH, Zurich, Switzerland (2003)

    Google Scholar 

  18. http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6101753

  19. Activity, S.: Spatial Location BOF of IETF (2000), http://www-nrc.nokia.com/ietf-spatial

  20. Leonhardt, U.: Supporting Location-awareness in Open Distributed Systems. PhD thesis, Department of Computing, Imperial College, London (1998)

    Google Scholar 

  21. Narayanan, A.K.: Realms of States: a Framework for Location Aware Mobile Computing. In: Proceedings of the first international workshop on mobile commerce (2001)

    Google Scholar 

  22. Hu, H., Lee, D.-L.: Semantic Location Modeling for Location Navigation in Mobile Environment. In: Proceedings of the 2004 IEEE international conference on mobile data management (MDM 2004) (2004)

    Google Scholar 

  23. Parodi, B.B., Lenz, H., Szabo, A., Wang, H., Horn, J., Bamberger, J., Obradovic, J.: Initialization and Online-Learning of RSS Maps for Indoor/Campus Localization. In: Proceedings of IEEE/ION PLANS 2006, San Diego, USA (2006)

    Google Scholar 

  24. Parodi, B.B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: SLL: Statistical Conditions and Algebraic Properties. In: Proceedings of 4th Workshop on Positioning, Navigation and Communication 2007 (WPNC 2007), Hannover, Germany (2007)

    Google Scholar 

  25. Parodi, B.B., Lenz, H., Szabo, A., Bamberger, J., Horn, J.: Algebraic and Statistical Conditions for Use of SLL. In: Proceedings of European Control Conference 2007, Greece (2007)

    Google Scholar 

  26. Lott, M., Forkel, I.: A Multi-Wall-and Floor Model for Indoor Radio Propagation. Vehicular Technology Conference (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Julie A. Jacko

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D. (2007). Enhancing the Map Usage for Indoor Location-Aware Systems. In: Jacko, J.A. (eds) Human-Computer Interaction. Interaction Platforms and Techniques. HCI 2007. Lecture Notes in Computer Science, vol 4551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73107-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73107-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73106-1

  • Online ISBN: 978-3-540-73107-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics