Abstract
In contrast to the previous studies that have dealt with phenomenon of coherence resonance induced by external noise in excitable neuron model, in this paper the mechanism of bifurcation-dependent coherence resonance (CR) of excitable neuron model is investigated by researching the random transitions of system motion between attractors in the two sides of bifurcation point. The results of research show: For two excitable neuron model, FHN neuron model and HR neuron model, There exist different attractors in two sides of the two excitable neuron model Hopf bifurcation point, at the presence of internal or external noise the system motion may transit between attractors in two sides of bifurcation point; mechanism of bifurcation-dependent CR of excitable neuron model is related to this kind of random transitions, the frequency of transitions tend towards a certain frequency for a certain optimal noise intensity, and the signal-noise-ratio of system response evaluated at this certain frequency is maximal at the optimal noise intensity, CR occurs.
Chapter PDF
Similar content being viewed by others
References
Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, L453–L457 (1981)
Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)
Gammaitoni, L., Hanggi, P., et al.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)
Longtin, A.: Stochastic resonance in neuron model. J.Stat Phys. 70, 309–327 (1993)
Gong, P.L., Xu, J.X.: Global dynamics and stochastic resonance of forced FitzHugh-Nagumo neuron model. Phys. Rev. E. 63, 31906 (2001)
Gong, Y.F, Xu, J.X.: Stochastic resonance: When does it not occur in neuronal models. Phy. Let.A 243, 351–359 (1998)
Wiesenfield, K., Moss, F.: Stochastic resonance and benefits of noise: from ice ages to crayfish and squids. Nature 373, 33–35 (1995)
Collins, J.J., Chow, C.C., Imhoff, T.: Aperiodic Stochastic resonance. Phys. Rev. E. 52, R3321–3324 (1995)
Collins, J.J., Chow, C.C., Imhoff, T.: Stochastic resonance without tuning. Nuture 376, 236–238 (1995)
Zhang, G.J., Xu, J.X.: Characteristic of nonlinear system stochastic resonance in the neighborhood of bifurcation point (in Chinese), Acta of Physica Sinica., 54(2), 557–564 (2005)
Zhang, G.J., Xu, J.X.: Stochastic Resonance induced by novel random transitions of motion of FitzHugh-Nagumo Neuron Model, Chaos,Solitons and Fractals, 23(4), 1439–1449 (2005)
Gong, P.L, Xu, J.X.: Coherence resonance in a noise-driven excitable neuron model. Chaos,Solitons & Fractals 13, 885–895 (2002)
Longtin, A.: Autonomous stochastic resonance in bursting neuron. Phys. Rev. E. 55, 868–876 (1997)
Wu, S., Ren, W., He, K., Huang, Z.: Burst and Coherence resonance in Rose-Hindmarsh model induced by additive noise. Phys. Lett. A. 279, 347–354 (2001)
Gu, H., Yang, M., Li, L., Liu, Z., Ren, W.: Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios. Phys. Lett. A 319, 89–96 (2003)
Neiman, A., Saparin, P.I., Stone, L.: Coherence resonance at noisy precursors of bifurcation in nonlinear dynamical systems. Phys. Rev. E 56, 270–273 (1997)
Shi, X., Lu, Q.-S.: Coherence resonance and synchronization of Hindmarsh-Rose neuron model with noise. Chinese Physics 14(6), 1088–1094 (2005)
Namachchivaya, N.S., Ariaratnam, S.T: Stochastically perturbed Hopf bifurcation. International Journal of Nonlinear Mechanics 22(5), 363–372 (1987)
Manjarrez, E., Rojas-piloni, J.G., Mendez, I., Martinez, L., Velez, D., Vazquez, D., Flores, A.: Internal stochastic in the coherence resonance between spinal and cortical neuronal ensembles in the cat. Neuroscience Letters 326, 93–96 (2002)
Yang, H.J., Hu, S.J., Han, S., et al.: Relation between responsiveness to neurotransmitters and complexity of epileptiform activity in rat hippocampal CA1 neurons[J]. Epilepsia 43(11), 1330–1336 (2002)
Hu, S.J., Yang, H.J., Jian, Z., Long, K.P., Duan, Y.B., Wang, Y.H., Xing, J.L., Xu, H., Ju, G.: Adrenergic sensitivity of neurons with non-periodic firing activity in rat injures dorsal root ganglion. Neuroscience 101(3), 689–698 (2000)
Tan, N., Xu, J.X., et al.: The bifurcation mechanism arousing the phenomenon of sensitivity of non-periodic activity in neurons. Acta Biophysica Sinica 19(4), 395–400 (2003)
Hu, G.: Stochastic resonance without external periodic force. Phys. Rev. Lett. 71, 807–810 (1993)
Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise- driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)
FitzHugh, R.: Biological Engineering, edited by H.P. Schwann. In: Nagumo, J., Arimoto, S., Yoshizawa, S. (eds.) Pro.ZRE, vol. 50, p. 2061. McGraw-Hill, New York (1962)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, GJ., Wang, J., Xu, JX., Wang, XB., Yao, H. (2007). Mechanism of Bifurcation-Dependent Coherence Resonance of Excitable Neuron Model. In: Duffy, V.G. (eds) Digital Human Modeling. ICDHM 2007. Lecture Notes in Computer Science, vol 4561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73321-8_87
Download citation
DOI: https://doi.org/10.1007/978-3-540-73321-8_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73318-8
Online ISBN: 978-3-540-73321-8
eBook Packages: Computer ScienceComputer Science (R0)