Abstract
We present a technique for using infeasible program paths to automatically infer Range Predicates that describe properties of unbounded array segments. First, we build proofs showing the infeasibility of the paths, using axioms that precisely encode the high-level (but informal) rules with which programmers reason about arrays. Next, we mine the proofs for Craig Interpolants which correspond to predicates that refute the particular counterexample path. By embedding the predicate inference technique within a Counterexample-Guided Abstraction-Refinement (CEGAR) loop, we obtain a method for verifying data-sensitive safety properties whose precision is tailored in a program- and property-sensitive manner. Though the axioms used are simple, we show that the method suffices to prove a variety of array-manipulating programs that were previously beyond automatic model checkers.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis by predicate abstraction. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 164–180. Springer, Heidelberg (2005)
Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis. In: POPL 2002: Principles of Programming Languages, pp. 1–3. ACM Press, New York (2002)
Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant synthesis in combination theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, Springer, Heidelberg (2007)
Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI 2007 (to appear)
Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order theorem provers in the Jahob data structure verification system. In: Verification, Model Checking and Abstract Interpretation (November 2007)
Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)
Chaki, S., Clarke, E.M., Groce, A., Strichman, O.: Predicate abstraction with minimum predicates. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 19–34. Springer, Heidelberg (2003)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)
Dams, D., Namjoshi, K.S.: Shape analysis through predicate abstraction and model checking. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 310–324. Springer, Heidelberg (2002)
Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 287–302. Springer, Heidelberg (2006)
Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL 2002: Principles of Programming Languages, pp. 191–202. ACM Press, New York (2002)
Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array operations. In: POPL, pp. 338–350 (2005)
Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proof. In: POPL 2004, pp. 232–244. ACM Press, New York (2004)
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002: Principles of Programming Languages, pp. 58–70. ACM Press, New York (2002)
Jain, H., Ivancic, F., Gupta, A., Ganai, M.K.: Localization and register sharing for predicate abstraction. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 397–412. Springer, Heidelberg (2005)
Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)
Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 298–312. Springer, Heidelberg (2006)
Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 24–38. Springer, Heidelberg (2005)
Shuvendu, K.: Lahiri and Shaz Qadeer. Verifying properties of well-founded linked list. In: POPL, pp. 115–126 (2006)
Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static analyses. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, Springer, Heidelberg (2000)
McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)
Rakamaric, Z., Bingham, J.D., Hu, A.J.: An inference-rule-based decision procedure for verification of heap-manipulating programs with mutable data and cyclic data structures. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, Springer, Heidelberg (2007)
Reps, T.W.: Demand interprocedural program analysis using logic databases. In: Workshop on Programming with Logic Databases (1993)
Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jhala, R., McMillan, K.L. (2007). Array Abstractions from Proofs. In: Damm, W., Hermanns, H. (eds) Computer Aided Verification. CAV 2007. Lecture Notes in Computer Science, vol 4590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73368-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-73368-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73367-6
Online ISBN: 978-3-540-73368-3
eBook Packages: Computer ScienceComputer Science (R0)