Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Labeling Schemes for Vertex Connectivity

  • Conference paper
Automata, Languages and Programming (ICALP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4596))

Included in the following conference series:

  • 1502 Accesses

Abstract

This paper studies labeling schemes for the vertex connectivity function on general graphs. We consider the problem of labeling the nodes of any n-node graph is such a way that given the labels of two nodes u and v, one can decide whether u and v are k-vertex connected in G, i.e., whether there exist k vertex disjoint paths connecting u and v. The paper establishes an upper bound of k 2logn on the number of bits used in a label. The best previous upper bound for the label size of such labeling scheme is 2klogn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2003)

    Google Scholar 

  2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2001)

    Google Scholar 

  4. Alstrup, S., Rauhe, T.: Improved Labeling Scheme for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)

    Google Scholar 

  5. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43’rd annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  6. Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. on Information Theory IT-12, 148–153 (1966)

    Article  MathSciNet  Google Scholar 

  7. Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph. J. of Mathematical Analysis and Applications 20, 583–600 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)

    Google Scholar 

  9. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proc. 21st ACM Symp. on Principles of Database Systems (June 2002)

    Google Scholar 

  10. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Symp. on Theoretical Aspects of Computer Science (March 2002)

    Google Scholar 

  12. Gavoille, C., Paul, C.: Split decomposition and distance labelling: an optimal scheme for distance hereditary graphs. In: Proc. European Conf. on Combinatorics, Graph Theory and Applications (September 2001)

    Google Scholar 

  13. Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. J. of Distributed Computing 16, 111–120 (2003)

    Article  Google Scholar 

  14. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–488. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pp. 210–219. ACM Press, New York (2001)

    Google Scholar 

  16. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. on Descrete Math 5, 596–603 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Workshop on Algorithms and Data Structures (August 2001)

    Google Scholar 

  18. Kaplan, H., Milo, T.: Parent and ancestor queries using a compact index. In: Proc. 20th ACM Symp. on Principles of Database Systems (May 2001)

    Google Scholar 

  19. Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, ACM Press, New York (2002)

    Google Scholar 

  20. Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science, pp. 516–528 (February 2000)

    Google Scholar 

  21. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM Journal on Computing 34, 23–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Korman, A.: General Compact Labeling Schemes for Dynamic Trees. In: Proc. 19th International Symp. on Distributed Computing (September 2005)

    Google Scholar 

  23. Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees. In: Proc. 25th Annual Symposium on Principles of Distributed Computing (July 2006)

    Google Scholar 

  24. Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog. Eindhoven, The Netherlands, July 2003, SV LNCS (2003)

    Google Scholar 

  25. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37, 49–75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Korman, A., Peleg, D., Rodeh, Y.: Constructing Labeling Schemes through Universal Matrices. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Proc. 25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pp. 30–41 (1999)

    Google Scholar 

  28. Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. of the ACM 51, 993–1024 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10, Hersonissos, Crete, Greece (July 2001)

    Google Scholar 

  31. Even, S.: Graph Algorithms. Computer Science Press (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Christian Cachin Tomasz Jurdziński Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korman, A. (2007). Labeling Schemes for Vertex Connectivity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds) Automata, Languages and Programming. ICALP 2007. Lecture Notes in Computer Science, vol 4596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73420-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73420-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73419-2

  • Online ISBN: 978-3-540-73420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics