Abstract
In this paper, we introduce two pairs operators in fuzzy formal contexts. Based on the proposed operators, we present two types of generalized variable precision formal concepts, i.e. property oriented crisp-fuzzy concepts and object oriented fuzzy-crisp concepts. We have different level generalized formal concepts with different precision level. Last, we discuss the relationship between different precision level generalized concepts lattices in details.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)
Gediga, B., Wille, R.: Formal Concept Analysis. Mathematic Foundations. Springer, Berlin (1999)
Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Mach. Learning 10, 95–122 (1996)
Faid, M., Missaoi, R., Godin, R.: Mining complex structures using context concatenation in formal concept analysis. International KRUSE Symposium, Vancouver, BC (August 11–13, 1997)
Godin, R., Missaoi, R.: An incremental concept formation approach for learning from databases. Theoret. Comput. Sci. 133, 387–419 (1994) (special issues on Formal Methods in Databases and Software Engineering)
Harms, S.K., Deogum, J.S.: Sequential association rule mining with time lags. J. Intell. Inform. Systems 22(1), 7–22 (2004)
Wille, R.: Knowledge acquisition by methods of formal concept analysis. In: Diday, E. (ed.) Data Analysis, Learning Symbolic and Numeric Knowledge, Nova Science, pp. 365–380 (1989)
Burusco, A., Fuentes-Gonzalez, R.: Concept lattices defined from implication operators. Fuzzy Sets and systems 114(3), 431–436 (1998)
Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., Nafkha, I.: A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Information Sciences 163, 253–262 (2004)
Belohlavek, R.: Fuzzy closure operators. I. J. Math. Anal. Appl. 262, 473–489 (2001)
Belohlavek, R.: Concept lattice and order in fuzzy logic. Annals of pure and Apll. Logic 128(1-3), 277–298 (2004)
Popescu, A.: A general approach to fuzzy concept. Math. Logic Quaterly 50(3), 1–17 (2001)
Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematic Logic 43(8), 1009–1039 (2004)
Elloumi, S., Jaoua, A.: Automatic classification using fuzzy concepts. In: Proc. JCIS, Atlantic City, vol. 1, pp. 276C279 (2000)
Jaoua, A., Elloumi, S.: Galois connection, formal concepts and Galois lattice in real relations: application in a real classifier. The Journal of Systems and Software 60, 149–163 (2002)
Fan, S.Q.: Fuzzy Concept Lattice and Variable Precision Concept Lattice, Ph. M. Thesis, Faculty of Science, Xi’an Jiaotong University (2006)
Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in Data analysis, Rough Sets and Current Trends in Computing. In: RSCT’04. Proceedings of 3rd International Conference (2004)
Yao, Y.Y.: Concept lattices in rough set theory. In: Proceedings of, Annual Meeting of the North American Fuzzy Information Processing Society, pp. 796–801 (2004)
Gediga, G., Duntsch, I.: Modal-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162. IEEE Computer Society Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, HZ., Shao, MW. (2007). Two Types of Generalized Variable Precision Formal Concepts. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-73451-2_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73450-5
Online ISBN: 978-3-540-73451-2
eBook Packages: Computer ScienceComputer Science (R0)