Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Colored Simultaneous Geometric Embeddings

  • Conference paper
Computing and Combinatorics (COCOON 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4598))

Included in the following conference series:

Abstract

We introduce the concept of colored simultaneous geometric embeddings as a generalization of simultaneous graph embeddings with and without mapping. We show that there exists a universal pointset of size n for paths colored with two or three colors. We use these results to show that colored simultaneous geometric embeddings exist for: (1) a 2-colored tree together with any number of 2-colored paths and (2) a 2-colored outerplanar graph together with any number of 2-colored paths. We also show that there does not exist a universal pointset of size n for paths colored with five colors. We finally show that the following simultaneous embeddings are not possible: (1) three 6-colored cycles, (2) four 6-colored paths, and (3) three 9-colored paths.

Work on this paper began at the BICI Workshop on Graph Drawing, held in Bertinoro, Italy in March 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Welsh, D.J.A.: Matroids: fundamental concepts. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. I, pp. 481–526. North-Holland, Amsterdam (1999)

    Google Scholar 

  2. Biedl, T., Kaufmann, M., Mutzel, P.: Drawing planar partitions: HH-drawings. In: 24th Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 124–136 (1998)

    Google Scholar 

  3. Bose, P.: On embedding an outer-planar graph in a point set. Computational Geometry: Theory and Applications 23(3), 303–312 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. In: 8th Workshop on Algorithms and Data Structures (WADS), pp. 243–255 (2003)

    Google Scholar 

  5. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Intl. Journal of Computational Geometry and Applications 7(3), 211–223 (1997)

    Article  MathSciNet  Google Scholar 

  6. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Di Battista, G., Tamassia, R.: Algorithms for plane representation of acyclic digraphs. Theoretical Computer Science 61(2-3), 175–198 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: 20th Annual ACM-SIAM Symposium on Computational Geometry (SCG), pp. 340–346 (2004)

    Google Scholar 

  9. Kaufmann, M., Vrťo, I., Geyer, M.: Two trees which are self-intersecting when drawn simultaneously. In: 13th Symposium on Graph Drawing (GD), pp. 201–210 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guohui Lin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandes, U. et al. (2007). Colored Simultaneous Geometric Embeddings. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73545-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73544-1

  • Online ISBN: 978-3-540-73545-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics