Abstract
We build a new, implicitly relational abstract domain which gives accurate under-approximations of the set of real values that program variables can take. This statement is demonstrated both on a theoretical basis and on non-trivial numerical examples. It is, we believe, the first non-trivial under-approximating numerical domain in the static analysis literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chapoutot, A., Martel, M.: Différentiation automatique et formes de Taylor en analyse statique de programmes numériques (in French). In: AFADL 2007 (2007)
Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for computing fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)
Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction of approximations of fixed points. Principles of Programming Languages 4, 238–252 (1977)
Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and Computation 2(4), 511–547 (1992)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL 1978, pp. 84–97 (1978)
Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans. Prog. Lang. Systems 19, 253–291 (1997)
Goldsztejn, A.: Modal intervals revisited. Reliable Computing (submitted)
Goldsztejn, A., Daney, D., Rueher, M., Taillibert, P.: Modal intervals revisited: a mean-value extension to generalized intervals. In: QCP 2005 (2005)
Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)
Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided underapproximation-widening for multi-process systems. In: POPL (2005)
Kaucher, E.W.: Interval analysis in the extended interval space IR. Computing (Supplementum) 2, 33–49 (1980)
Kaucher, E.W.: Uber metrische und algebraische eigenshaften einiger beim numerischen rechnen auftretender raume, PhD thesis, Karlsruhe (1973)
Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001)
Pasareanu, C.S., Pelánek, R., Visser, W.: Concrete model checking with abstract matching and refinement. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 52–66. Springer, Heidelberg (2005)
Schmidt, D.A.: A calculus of logical relations for over- and underapproximating static analyses. Sci. Comput. Program 64(1), 29–53 (2007)
Schmidt, D.A.: Underapproximating predicate transformers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 127–143. Springer, Heidelberg (2006)
Stolfi, J., de Figueiredo, L.H.: An introduction to affine arithmetic, TEMA (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goubault, E., Putot, S. (2007). Under-Approximations of Computations in Real Numbers Based on Generalized Affine Arithmetic. In: Nielson, H.R., Filé, G. (eds) Static Analysis. SAS 2007. Lecture Notes in Computer Science, vol 4634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74061-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-74061-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74060-5
Online ISBN: 978-3-540-74061-2
eBook Packages: Computer ScienceComputer Science (R0)