Abstract
In this paper, a novel face recognition method based on binary face edges is presented to deal with the illumination problem. The Binary Face Edge Map (BFEM) is extracted using the Locally Adaptive Threshold (LAT) algorithm. Based on BEFM, a new image similarity metric is proposed. Experimental results show that face recognition rates of 76.32% and 82.67% are achieved respectively on 798 AR images and 150 Yale images with changed lighting conditions and facial expression variations when one sample per subject is used as the target image. The proposed method takes less time for image matching and outperforms some existing face recognition approaches, especially in changed lighting conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brunelli, R., Poggio, T.: Face Recognition: Features Versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1042–1052 (1993)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 131–137 (2004)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Transactions on Neural Networks 13, 1450–1464 (2002)
Takacs, B.: Comparing Face Images Using the Modified Hausdorff Distance. Pattern Recognition 31, 1873–1881 (1998)
Gao, Y., Leung, M.K.H.: Line Segment Hausdorff Distance on Face Matching. Pattern Recognition 35, 361–371 (2002)
Wiskott, L., Fellous, J.-M., Kruger, N., Malsburg, C.V.D.: Face Recognition by Elastic Bunch Graph Matching. Internal Report 96-08, Ruhr University, Bochum, Germany (1996)
Deniz, O., Castrillon, M., Hernandez, M.: Face Recognition Using Independent Component Analysis and Support Vector Machines. Pattern Recognition Letters 24, 2153–2157 (2003)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Differing Pose and Lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 643–660 (2001)
Zhang, L., Samaras, D.: Face Recognition Under Variable Lighting Using Harmonic Image Exemplars. In: Proc. Int’l Conf. Computer Vision and Pattern Recognition, Madison, Wisconsin, vol. 1, pp. 19–25 (2003)
Wang, H., Li, S.Z., Wang, Y.: Generalized Quotient Image. In: Proc. Int’l Conf. Computer Vision and Pattern Recognition, Washington DC, vol. 2, pp. 498–505 (2004)
Savvides, M., Vijaya Kumar, B.V.K., Khosla, P.L.: Corefaces—Robust Shift Invariant PCA Based Correlation Filter for Illumination Tolerant Face Recognition. In: Proc. Int’l Conf. Computer Vision and Pattern Recognition, Washington DC, vol. 2, pp. 834–841 (2004)
Lee, S.Y., Ham, Y.K., Park, R.H.: Recognition of Human Front Faces Using Knowledge-Based Feature Extraction and Neuro-fuzzy Algorithm. Pattern Recognition 29, 1863–1876 (1996)
Yale University: http://cvc.yale.edu/projects/yalefaces/yalefaces.html
Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24, (June 1998)
Bian, Z.Q., Zhang, X.G.: Pattern Recognition (in Chinese), 2nd edn. Tsinghua University Press, Beijing (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Song, J., Chen, B., Chi, Z., Qiu, X., Wang, W. (2007). Face Recognition Based on Binary Template Matching. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2007. Lecture Notes in Computer Science, vol 4681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74171-8_115
Download citation
DOI: https://doi.org/10.1007/978-3-540-74171-8_115
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74170-1
Online ISBN: 978-3-540-74171-8
eBook Packages: Computer ScienceComputer Science (R0)