Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distribution-Free Testing Lower Bounds for Basic Boolean Functions

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2007, RANDOM 2007)

Abstract

In the distribution-free property testing model, the distance between functions is measured with respect to an arbitrary and unknown probability distribution \(\mathcal{D}\) over the input domain. We consider distribution-free testing of several basic Boolean function classes over {0,1}n, namely monotone conjunctions, general conjunctions, decision lists, and linear threshold functions. We prove that for each of these function classes, Ω((n/logn)1/5) oracle calls are required for any distribution-free testing algorithm. Since each of these function classes is known to be distribution-free properly learnable (and hence testable) using Θ(n) oracle calls, our lower bounds are within a polynomial factor of the best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity testing in higher dimension. Information and Computation 204, 1704–1717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing low-degree polynomials over GF(2). In: Proceedings of RANDOM-APPROX, pp. 188–199 (2003)

    Google Scholar 

  3. Alon, N., Shapira, A.: Homomorphisms in Graph Property Testing - A Survey. Topics in Discrete Mathematics (to appear, 2007), available at http://www.math.tau.ac.il/~asafico/nesetril.pdf

  4. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993) (Earlier version in STOC 1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan, A.: Testing for concise representations. Submitted for publication (2007)

    Google Scholar 

  6. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonocity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Fischer, E.: The art of uninformed decisions: A primer to property testing. Computational Complexity Column of The Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pp. 103–112 (2002)

    Google Scholar 

  9. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samrodnitsky, A.: Monotonicity testing over general poset domains. In: Proc. 34th Annual ACM Symposium on the Theory of Computing, pp. 474–483. ACM Press, New York (2002)

    Google Scholar 

  10. Glasner, D., Servedio, R.: Distribution-free testing lower bounds for basic boolean functions (2007), http://www.cs.columbia.edu/rocco/papers/random07.html

  11. Goldreich, O.: Combinatorial property testing – a survey. In: Randomized Methods in Algorithms Design, AMS-DIMACS, pp. 45–61 (1998)

    Google Scholar 

  12. Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A.: Testing monotonicity. Combinatorica 20(3), 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halevy, S., Kushilevitz, E.: Distribution-Free Property Testing. In: Proceedings of the Seventh International Workshop on Randomization and Computation, pp. 302–317 (2003)

    Google Scholar 

  15. Halevy, S., Kushilevitz, E.: Distribution-Free Connectivity Testing. In: Proceedings of the Eighth International Workshop on Randomization and Computation, pp. 393–404 (2004)

    Google Scholar 

  16. Halevy, S., Kushilevitz, E.: A lower bound for distribution-free monotonicity testing. In: Proceedings of the Ninth International Workshop on Randomization and Computation, pp. 330–341 (2005)

    Google Scholar 

  17. Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT Press, Cambridge (1994)

    Google Scholar 

  18. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.: Testing Halfspaces. (Manuscript, 2007)

    Google Scholar 

  19. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Disc. Math. 16, 20–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, vol. II, Kluwer, Dordrecht (2001)

    Google Scholar 

  21. Rubinfeld, R.: Sublinear time algorithms (2006), available at http://theory.csail.mit.edu/~ronitt/papers/icm.ps

  22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. on Comput. 25, 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Turán, G.: Lower bounds for PAC learning with queries. In: COLT 1993. Proc. 6th Annual Conference on Computational Learning Theory, pp. 384–391 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glasner, D., Servedio, R.A. (2007). Distribution-Free Testing Lower Bounds for Basic Boolean Functions. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics