Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cyclic Railway Timetabling: A Stochastic Optimization Approach

  • Conference paper
Algorithmic Methods for Railway Optimization

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4359))

Abstract

Real-time railway operations are subject to stochastic disturbances. However, a railway timetable is a deterministic plan. Thus a timetable should be designed in such a way that it can absorb the stochastic disturbances as well as possible. To that end, a timetable contains buffer times between trains and supplements in running times and dwell times. This paper first describes a stochastic optimization model that can be used to find an optimal allocation of the running time supplements of a single train on a number of consecutive trips along the same line. The aim of this model is to minimize the average delay of the train. The model is then extended such that it can be used to improve a given cyclic timetable for a number of trains on a common railway infrastructure. Computational results show that the average delay of the trains can be reduced substantially by applying relatively small modifications to the timetable. In particular, allocating the running time supplements in a different way than what is usual in practice can be useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergmark, R.: Railroad capacity and traffic analysis using SIMON. In: Allan, J., Brebbia, C.A., Hill, R.J., Sciutto, G. (eds.) Computers in Railways V, pp. 183–191. WIT Press, Ashurst (1996)

    Google Scholar 

  2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, Springer, New York (1997)

    Google Scholar 

  3. Carey, M.: Ex ante heuristic measures of schedule reliability. Transportation Research B 33(7), 473–494 (1999)

    Article  MathSciNet  Google Scholar 

  4. Goverde, R.M.P.: The Max-Plus Algebra approach to railway timetable design. In: Mellitt, B., Hill, R.J., Allan, J., Sciutto, G., Brebbia, C.A. (eds.) Computers in Railways VI, pp. 339–350. WIT Press, Ashurst (1998)

    Google Scholar 

  5. Haldeman, L.: Automatische Analyse von IST-Fahrplen, Master’s thesis (in German), ETH Zürich, Switzerland (2003)

    Google Scholar 

  6. Hallowell, S.F., Harker, P.T.: Predictuing on-time performance in scheduled railroad operations: methodology and application to train scheduling. Transportation Research A 32(6), 279–295 (1998)

    Google Scholar 

  7. Higgins, A., Kozan, E.: Modelling train delays in urban networks. Transportation Science 32(4), 346–357 (1998)

    Article  MATH  Google Scholar 

  8. Huisman, T., Boucherie, R.J.: Running times on railway sections with heterogeneous train traffic. Transportation Research Part B 35, 271–292 (2001)

    Article  Google Scholar 

  9. Jochim, H.E.: Verspätung auf Stammstrecken: wie man ihrer nicht Herr wird. Der Nahverkehr (in German), 3 (2004)

    Google Scholar 

  10. König, H.: VirtuOS: Simulieren von Bahnbetrieb (in German). Betrieb und Verkehr 50(1-2), 44–47 (2001)

    Google Scholar 

  11. de Kort, A.F.: Advanced railway planning using Max-Plus algebra. In: Allan, J., Brebbia, C.A., Hill, R.J., Sciutto, G. (eds.) Computers in Railways VII, pp. 257–266. WIT Press, Ashurst (2000)

    Google Scholar 

  12. Linderoth, J.T., Shapiro, A., Wright, S.J.: The emprirical behavior of sampling methods for stochastic programming. Optimization Technical Report 02-01. University of Wisconsin-Madison (2002)

    Google Scholar 

  13. Middelkoop, D., Bouwman, M.: Train network simulator for support of network wide planning of infrastructure and timetables. In: Allan, J., Brebbia, C.A., Hill, R.J., Sciutto, G. (eds.) Computers in Railways VII, pp. 267–276. WIT Press, Ashurst (2000)

    Google Scholar 

  14. Mühlhans, E.: Berechnung der Verspätungsentwicklung bei Zugfahrten. Eisen-bahntechnische Rundschau 39, 465–468 (1990)

    Google Scholar 

  15. Nachtigall, K.: Periodic network optimization with different arc frequencies. Discrete Applied Mathematics 69, 1–17 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peeters, L.W.P.: Cyclic railway timetable optimization. Ph.D. thesis, Erasmus University Rotterdam, Rotterdam School of Management (2003)

    Google Scholar 

  17. Petersen, E.R., Taylor, A.J.: A structured model for rail line simulation and optimization. Transportation Science 18, 192–206 (1982)

    Google Scholar 

  18. Rudolph, R.: Allowances and margins in railway scheduling. In: Proceedings of WCRR 2003, Edinburgh, pp. 230–238 (2003)

    Google Scholar 

  19. Schwanhäußer, W.: The status of German railway operations management in research and practice. Transportation Research A 28(A), 495–500 (1994)

    Google Scholar 

  20. Serafini, P., Ukovich, W.: A mathematical model for Periodic Event Scheduling Problems. SIAM Journal on Discrete Mathematics 2, 550–581 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Soto y Koelemeijer, G., Iounoussov, A.R., Goverde, R.M.P., van Egmond, R.J.: PETER, a performance evaluator for railway timetables. In: Allan, J., Brebbia, C.A., Hill, R.J., Sciutto, G. (eds.) Computers in Railways VII, pp. 405–414. WIT Press, Ashurst (2000)

    Google Scholar 

  22. U.I.C.: Timetable recovery margins to guarantee timekeeping - Recovery margins, Leaflet 451-1, U.I.C. Paris, France (2000)

    Google Scholar 

  23. Vromans, M.J.C.M.: Reliability of railway services. Ph.D. thesis, Erasmus University Rotterdam, Rotterdam School of Management (2005)

    Google Scholar 

  24. Wahlborg, M.: Simulation models: important aids for Banverket’s planning process. In: Allan, J., Brebbia, C.A., Hill, R.J., Sciutto, G. (eds.) Computers in Railways V, pp. 175–181. WIT Press, Ashurst (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Geraets Leo Kroon Anita Schoebel Dorothea Wagner Christos D. Zaroliagis

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kroon, L.G., Dekker, R., Vromans, M.J.C.M. (2007). Cyclic Railway Timetabling: A Stochastic Optimization Approach. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds) Algorithmic Methods for Railway Optimization. Lecture Notes in Computer Science, vol 4359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74247-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74247-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74245-6

  • Online ISBN: 978-3-540-74247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics