Abstract
This paper reports about the development of two provably correct approximate algorithms which calculate the Euclidean shortest path (ESP) within a given cube-curve with arbitrary accuracy, defined by ε> 0, and in time complexity \(\kappa(\varepsilon) \cdot {\cal O}(n)\), where κ(ε) is the length difference between the path used for initialization and the minimum-length path, divided by ε. A run-time diagram also illustrates this linear-time behavior of the implemented ESP algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton Conf. Commun. Control Comput., pp. 510–517 (1985)
Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Computational Geometry 3, 177–191 (1988)
Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)
Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm. IEEE Trans. Pattern Analysis Machine Intelligence 24, 962–970 (2002)
Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In: Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)
Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Computational Geometry 6, 485–524 (1991)
Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In Proc. ACM Conf. Computational Geometry, pp. 41–48. ACM Press, New York, NY, USA (1994)
Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Pub. Co., Boston (1997)
Klette, R., Kovalevsky, V.V., Yip, B.: Length estimation of digital curves. In: Proc. Vision Geometry, SPIE 3811, pp. 117–129 (1999)
Klette, R., Bülow, T.: Critical edges in simple cube-curves. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 467–478. Springer, Heidelberg (2000)
Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)
Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. In: Platinum Jubilee Conference of The Indian Statistical Institute. IEEE Conference, Kolkata, Report 2141 on www.ima.umn.edu/preprints/oct2006
Li., F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems. In: Proc. Computing: Theory Applications, plenary talk, pp. 9–19 (2007)
Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG, pp. 124–133 (2004)
Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inform. Process. Lett. 20, 259–263 (1985)
Talbot, M.: A dynamical programming solution for shortest path itineraries in robotics. Electr. J. Undergrad. Math. 9, 21–35 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, F., Klette, R. (2007). Euclidean Shortest Paths in Simple Cube Curves at a Glance. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_82
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)