Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Estimation of Camera Homography Using Fuzzy RANSAC

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4705))

Included in the following conference series:

Abstract

In this paper, we propose a method for robustly estimating camera homography using fuzzy RANSAC from the correspondences between consecutive two images. We use a fuzzified version of the original RANSAC algorithm to obtain accurate camera homography in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier scale. To resolve this problem, the proposed method classifies all samples into three classes (good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. Experimental results show the robustness of the proposed approach for computing a homography on real image sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Prince, S.J.D., Xu, K., Cheok, A.D.: Augmented Reality Camera Tracking with Homographies. IEEE Computer Graphics and Applications 22(6) (2002)

    Google Scholar 

  2. Stewart, C.V.: Robust parameter estimation in Computer Vision. SIAM Review 41(3), 513–537 (1999)

    Article  MATH  Google Scholar 

  3. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commnunications fo the ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  4. Valenzuela-Rendon, M.: The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables. In: International Conference on Genetic Algorithms, pp. 346–353 (1991)

    Google Scholar 

  5. Wang, H., Wang, C., Wu, G.: Bi-criteria Fuzzy C-Means Analysis. Fuzzy Sets and Systems. 64, 311–319 (1994)

    Article  MATH  Google Scholar 

  6. Tomasi, C., Kanade, T.: Detection and tracking of point features. CMU Technical Report, CMU-CS-91-132, April

    Google Scholar 

  7. Hartley, R.I, Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J.j., Kim, G. (2007). Robust Estimation of Camera Homography Using Fuzzy RANSAC. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74472-6_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74472-6_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74468-9

  • Online ISBN: 978-3-540-74472-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics