Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems

  • Conference paper
Computational Science and Its Applications – ICCSA 2007 (ICCSA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4707))

Included in the following conference series:

Abstract

In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2 ∈ V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T = (V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \(\sum_{v\in V_T} \{d_T(s_1,v)+ d_T(s_2,v)\}\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \(\max_{s\in (s_1,s_2)} \{ \sum_{v\in V_T} d_T(s,v) \}\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \(\max_{v\in V_T}\left\{ d_T(s_1,v)+d_T(s_2,v) \right\}\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε> 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Karakostas, G.: A 2 + ε approximation algorithm for the k-MST problem. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 754–759 (2000)

    Google Scholar 

  2. Arya, S., Ramesh, H.: A 2.5-Factor approximation algorithm for the k-MST problem. Information Processing Letters 65, 117–118 (1998)

    Article  Google Scholar 

  3. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. Journal of Computer and System Sciences 58, 101–108 (1999)

    Article  MATH  Google Scholar 

  4. Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for k-source bottleneck routing cost spanning tree problems. In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 355–366. Springer, Heidelberg (2004) (extended abstract)

    Google Scholar 

  5. Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for some k-source shortest paths spanning tree problems. Networks 47, 147–156 (2006)

    Article  MATH  Google Scholar 

  6. Connamacher, H.S., Proskurowski, A.: The complexity of minimizing certain cost metrics for k-source spanning trees. Discrete Applied Mathematics 131, 113–127 (2003)

    Article  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithm, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Farley, A.M., Fragopoulou, P., Krumme, D.W., Proskurowski, A., Richards, D.: Multi-source spanning tree problems. Journal of Interconnection Networks 1, 61–71 (2000)

    Article  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  10. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings, 37th IEEE Symposium on Foundations of Computer Science (FOCS 1996), pp. 302–309 (1996)

    Google Scholar 

  11. Guérin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Transactions on Networking 10, 613–620 (2002)

    Article  Google Scholar 

  12. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing 3, 188–195 (1974)

    Article  MATH  Google Scholar 

  13. Johnson, D.S., Lenstra, J.K., Rinnooy, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)

    Article  MATH  Google Scholar 

  14. Ravi, R., Sundaram, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9, 178–200 (1996)

    Article  MATH  Google Scholar 

  15. Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for some optimum communication spanning tree problems. Discrete Applied Mathematics 102, 245–266 (2000)

    Article  MATH  Google Scholar 

  16. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM Journal on Computing 29, 761–778 (2000)

    Article  MATH  Google Scholar 

  17. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. Journal of Algorithm 44, 359–378 (2002)

    Article  MATH  Google Scholar 

  18. Wu, B.Y.: Approximation algorithms for the optimal p-source communication spanning tree. Discrete Applied Mathematics 143, 31–42 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y.H., Liao, GL., Tang, C.Y. (2007). Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74484-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74482-5

  • Online ISBN: 978-3-540-74484-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics