Abstract
In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2 ∈ V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T = (V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \(\sum_{v\in V_T} \{d_T(s_1,v)+ d_T(s_2,v)\}\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \(\max_{s\in (s_1,s_2)} \{ \sum_{v\in V_T} d_T(s,v) \}\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \(\max_{v\in V_T}\left\{ d_T(s_1,v)+d_T(s_2,v) \right\}\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε> 0.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S., Karakostas, G.: A 2 + ε approximation algorithm for the k-MST problem. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 754–759 (2000)
Arya, S., Ramesh, H.: A 2.5-Factor approximation algorithm for the k-MST problem. Information Processing Letters 65, 117–118 (1998)
Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST problem. Journal of Computer and System Sciences 58, 101–108 (1999)
Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for k-source bottleneck routing cost spanning tree problems. In: Laganà, A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 355–366. Springer, Heidelberg (2004) (extended abstract)
Chen, Y.H., Wu, B.Y., Tang, C.Y.: Approximation algorithms for some k-source shortest paths spanning tree problems. Networks 47, 147–156 (2006)
Connamacher, H.S., Proskurowski, A.: The complexity of minimizing certain cost metrics for k-source spanning trees. Discrete Applied Mathematics 131, 113–127 (2003)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithm, 2nd edn. MIT Press, Cambridge (2001)
Farley, A.M., Fragopoulou, P., Krumme, D.W., Proskurowski, A., Richards, D.: Multi-source spanning tree problems. Journal of Interconnection Networks 1, 61–71 (2000)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)
Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings, 37th IEEE Symposium on Foundations of Computer Science (FOCS 1996), pp. 302–309 (1996)
Guérin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Transactions on Networking 10, 613–620 (2002)
Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing 3, 188–195 (1974)
Johnson, D.S., Lenstra, J.K., Rinnooy, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)
Ravi, R., Sundaram, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9, 178–200 (1996)
Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for some optimum communication spanning tree problems. Discrete Applied Mathematics 102, 245–266 (2000)
Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial time approximation scheme for minimum routing cost spanning trees. SIAM Journal on Computing 29, 761–778 (2000)
Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum routing cost spanning trees. Journal of Algorithm 44, 359–378 (2002)
Wu, B.Y.: Approximation algorithms for the optimal p-source communication spanning tree. Discrete Applied Mathematics 143, 31–42 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y.H., Liao, GL., Tang, C.Y. (2007). Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems. In: Gervasi, O., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2007. ICCSA 2007. Lecture Notes in Computer Science, vol 4707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74484-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-74484-9_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74482-5
Online ISBN: 978-3-540-74484-9
eBook Packages: Computer ScienceComputer Science (R0)