Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extraction of Association Rules Based on Literalsets

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4654))

Included in the following conference series:

Abstract

In association rules mining, current trend is witnessing the emergence of a growing number of works toward bringing negative items to light in the mined knowledge. However, the amount of the extracted rules is huge, thus not feasible in practice. In this paper, we propose to extract a subset of generalized association rules (i.e., association rules with negation) from which we can retrieve the whole set of generalized association rules. Results of experiments carried out on benchmark databases showed important profits in terms of compactness of the introduced generic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Intl. Conference on Management of Data, Washington, USA, pp. 207–216. ACM Press, New York (1993)

    Google Scholar 

  2. Hamrouni, T., Yahia, S.B., Slimani, Y.: Prince: Extraction optimisée des bases génériques de régles sans calcul de fermetures. In: Proceedings of the Intl. INFORSID Conference, Hermés, Grenoble, France, pp. 353–368 (2005)

    Google Scholar 

  3. Amir, A., Feldman, R., Kashi, R.: A new versatile method for association generation. In: Princ. of Data Mining and Knowledge Disc., pp. 221–231 (1997)

    Google Scholar 

  4. Brin, S., Motawni, R., Silverstein, C.: Beyond market baskets: Generalizing association rules to correlation. In: Proceedings of the SIGMOD, Tucson, Arizona (USA), pp. 265–276 (1997)

    Google Scholar 

  5. Savasere, A., Omiecinski, E., Navathe, S.B.: Mining for strong negative associa- tions in a large database of customer transactions. In: ICDE, Orlando, Florida, USA, pp. 494–502 (1998)

    Google Scholar 

  6. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems, 381–405 (2004)

    Google Scholar 

  7. Antonie, M.L., Zaiane, O.R.: Mining positive and negative association rules: An approach for confined rules. Technical report, University of Alberta, Department of Computing Science (2004)

    Google Scholar 

  8. Kryszkiewicz, M., Cichon, K.: Support oriented discovery of generalized disjunction-free representation of frequent patterns with negation. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 672–682. Springer, Heidelberg (2005)

    Google Scholar 

  9. Kryszkiewicz, M.: Generalized disjunction-free representation of frequents patterns with at most k negations. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 468–472. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Morzy, M.: Efficient mining of dissociation rules. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Bouker, S., Gasmi, G., Yahia, S.B., Nguifo, E.M.: Extraction des bases génériques de régles dŠassociation généralisées. In: EGC 2007, Namur, Belgium (2007)

    Google Scholar 

  13. Bastide, Y., Pasquier, N., Taouil, R., Lakhal, L., Stumme, G.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Proceedings of the Intl. Conference DOOD 2000. LNCS, pp. 972–986. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Il Yeal Song Johann Eder Tho Manh Nguyen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gasmi, G., Yahia, S.B., Nguifo, E.M., Bouker, S. (2007). Extraction of Association Rules Based on Literalsets. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2007. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74553-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74553-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74552-5

  • Online ISBN: 978-3-540-74553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics