Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Stochastic Local Search Approach to Vertex Cover

  • Conference paper
KI 2007: Advances in Artificial Intelligence (KI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4667))

Included in the following conference series:

Abstract

We introduce a novel stochastic local search algorithm for the vertex cover problem. Compared to current exhaustive search techniques, our algorithm achieves excellent performance on a suite of problems drawn from the field of biology. We also evaluate our performance on the commonly used DIMACS benchmarks for the related clique problem, finding that our approach is competitive with the current best stochastic local search algorithm for finding cliques. On three very large problem instances, our algorithm establishes new records in solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company (1979)

    Google Scholar 

  2. Gomes, F.C., Meneses, C.N., Pardalos, P.M., Viana, G.V.R.: Experimental analysis of approximation algorithms for the vertex cover and set covering problems. Computers and Operations Research 33(12), 3520–3534 (2006)

    Article  MATH  Google Scholar 

  3. Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel algorithms for FPT problems. Algorithmica 45, 269–284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Evans, I.K.: Evolutionary algorithms for vertex cover. In: Porto, V.W., Waagen, D. (eds.) Evolutionary Programming VII. LNCS, vol. 1447, pp. 377–386. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover problem. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory. LNCS, vol. 4076, Springer, Heidelberg (2006)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. DIMACS Series, vol. 49, pp. 49–99 (1999)

    Google Scholar 

  7. Xu, K.: BHOSLIB: Benchmarks with hidden optimum solutions for graph problems (maximum clique, maximum independent set, minimum vertex cover and vertex coloring) – hiding exact solutions in random graphs. Web site, http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

  8. Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved. In: STACS 1999. Proceedings of the 16th Symposium on Theoretical Aspects in Computer Science, pp. 561–570 (1999)

    Google Scholar 

  9. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving large FPT problems on coarse grained parallel machines. Journal of Computer and System Sciences 67, 691–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shyu, S.J., Yin, P.Y., Lin, B.M.T.: An ant colony optimization algorithm for the minimum weight vertex cover problem. Annals of Operations Research 131(1–4), 283–304 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series, vol. 26. American Mathematical Society (1996)

    Google Scholar 

  12. Barbosa, V.C., Campos, L.C.D.: A novel evolutionary formulation of the maximum independent set problem. Journal of Combinatorial Optimization 8, 419–437 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Busygin, S., Butenko, S., Pardalos, P.M.: A heuristic for the maximum independent set problem based on optimization of a quadratic over a sphere. Journal of Combinatorial Optimization 6, 287–297 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research 25, 159–185 (2006)

    Google Scholar 

  15. Pullan, W.: Phased local search for the maximum clique problem. Journal of Combinatorial Optimization 12, 303–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  17. Kullmann, O.: The SAT 2005 solver competition on random instances. Journal on Satisfiability, Boolean Modeling and Computation 2, 61–102 (2005)

    Google Scholar 

  18. Selman, B., Kautz, H.A.: Domain-independent extensions to GSAT: Solving large structured satisfiability problems. In: IJCAI 1993. Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 290–295 (1993)

    Google Scholar 

  19. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: AAAI 2004. Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 191–196 (2004)

    Google Scholar 

  20. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In: IJCAI 2005. Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 337–342 (2005)

    Google Scholar 

  21. Le Berre, D., Simon, L.: The SAT 2004 competition. Web site, http://www.lri.fr/~simon/contest04/results/

  22. Liu, L., Truszczynski, M.: Local-search techniques for propositional logic extended with cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 495–509. Springer, Heidelberg (2003)

    Google Scholar 

  23. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random graphs, pp. 75–88 [11]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Hertzberg Michael Beetz Roman Englert

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, S., Helmert, M., Gretton, C. (2007). A Stochastic Local Search Approach to Vertex Cover. In: Hertzberg, J., Beetz, M., Englert, R. (eds) KI 2007: Advances in Artificial Intelligence. KI 2007. Lecture Notes in Computer Science(), vol 4667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74565-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74565-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74564-8

  • Online ISBN: 978-3-540-74565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics