Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Selection of Decision Stumps in Bagging Ensembles

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

Abstract

This article presents a comprehensive study of different ensemble pruning techniques applied to a bagging ensemble composed of decision stumps. Six different ensemble pruning methods are tested. Four of these are greedy strategies based on first reordering the elements of the ensemble according to some rule that takes into account the complementarity of the predictors with respect to the classification task. Subensembles of increasing size are then constructed by incorporating the ordered classifiers one by one. A halting criterion stops the aggregation process before the complete original ensemble is recovered. The other two approaches are selection techniques that attempt to identify optimal subensembles using either genetic algorithms or semidefinite programming. Experiments performed on 24 benchmark classification tasks show that the selection of a small subset (≈ 10 − 15%) of the original pool of stumps generated with bagging can significantly increase the accuracy and reduce the complexity of the ensemble.

This work has been supported by Consejería de Educació n de la Comunidad Autónoma de Madrid, European Social Fund, and the Dirección General de Investigación, grant TIN2004-07676-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  2. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall/CRC (1994)

    Google Scholar 

  3. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. 14th International Conference on Machine Learning, pp. 211–218. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  4. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 476–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Martínez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proc. of the IASTED International Conference on Artificial Intelligence and Applications, pp. 258–263. Acta Press (2004)

    Google Scholar 

  6. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. Journal of Machine Learning Research 7, 1315–1338 (2006)

    Google Scholar 

  7. Martínez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 609–616 (2006)

    Google Scholar 

  8. Martínez-Muñoz, G., Suárez, A.: Using boosting to prune bagging ensembles. Pattern Recognition Letters 28(1), 156–165 (2007)

    Article  Google Scholar 

  9. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MATH  Google Scholar 

  10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd European Conference on Computational Learning Theory, pp. 23–37 (1995)

    Google Scholar 

  11. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  12. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A. (2007). Selection of Decision Stumps in Bagging Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics