Abstract
This article presents a comprehensive study of different ensemble pruning techniques applied to a bagging ensemble composed of decision stumps. Six different ensemble pruning methods are tested. Four of these are greedy strategies based on first reordering the elements of the ensemble according to some rule that takes into account the complementarity of the predictors with respect to the classification task. Subensembles of increasing size are then constructed by incorporating the ordered classifiers one by one. A halting criterion stops the aggregation process before the complete original ensemble is recovered. The other two approaches are selection techniques that attempt to identify optimal subensembles using either genetic algorithms or semidefinite programming. Experiments performed on 24 benchmark classification tasks show that the selection of a small subset (≈ 10 − 15%) of the original pool of stumps generated with bagging can significantly increase the accuracy and reduce the complexity of the ensemble.
This work has been supported by Consejería de Educació n de la Comunidad Autónoma de Madrid, European Social Fund, and the Dirección General de Investigación, grant TIN2004-07676-C02-02.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall/CRC (1994)
Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. 14th International Conference on Machine Learning, pp. 211–218. Morgan Kaufmann, San Francisco (1997)
Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 476–483. Springer, Heidelberg (2003)
Martínez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proc. of the IASTED International Conference on Artificial Intelligence and Applications, pp. 258–263. Acta Press (2004)
Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite programming. Journal of Machine Learning Research 7, 1315–1338 (2006)
Martínez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 609–616 (2006)
Martínez-Muñoz, G., Suárez, A.: Using boosting to prune bagging ensembles. Pattern Recognition Letters 28(1), 156–165 (2007)
Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd European Conference on Computational Learning Theory, pp. 23–37 (1995)
Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Heidelberg (2003)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martínez-Muñoz, G., Hernández-Lobato, D., Suárez, A. (2007). Selection of Decision Stumps in Bagging Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-74690-4_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74689-8
Online ISBN: 978-3-540-74690-4
eBook Packages: Computer ScienceComputer Science (R0)