Abstract
We have developed a high performance 3D convolution library for Protein Docking on IBM Blue Gene. The algorithm is designed to exploit slight locality of memory access in 3D-FFT by making full use of a cache memory structure. The 1D-FFT used in the 3D convolution is optimized for PowerPC 440 FP2 processors. The number of SIMOMD instructions is minimized by simultaneous computation of two 1D-FFTs. The high performance 3D convolution library achieves up to 2.16 Gflops (38.6% of peak) per node. The total performance of a shape complementarity search is estimated at 7 Tflops with the 4-rack Blue Gene system (4096 nodes).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sussman, J., et al.: Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D. Biol. Crystallogr. D54, 1078–1084 (1998), http://www.rcsb.org/pdb/
Gardiner, E., Willett, P., Artymiuk, J.: GAPDOCK: A genetic algorithm approach to protein docking in CAPRI round 1. Proteins: Structure, Function, and Genetics 52(1), 10–14 (2003)
Chen, H., Zhou, H.: Prediction of Interface Residues in Protein-Protein Complexes by a Consensus Neural Network Method: Test Against NMR Data. PROTEINS 61, 21–35 (2005)
Connolly, M.L.: Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface. Biopolymers 25(7), 1229–1247 (1986)
Kuntz, I., et al.: A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology 161(2), 269–288 (1992)
Norel, R., Petrey, D., Wolfson, H.J., Nussinov, R.: Examination of shape complementarity in docking of unbound proteins. Proteins 36(3), 307–317 (1999)
Katchalski-Katzir, et al.: Molecular surface recognition: Deterimination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. 89(6), 2195–2199 (1992)
Chen, R., Weng, Z.: Docking Unbound Proteins Using Shape Complementarity, Desolvation, and Electrostatics. Proteins 47, 281–294 (2002)
Chen, R., Weng, Z.: A Novel Shape Complementarity Scoring Function for Protein-Protein Docking. PROTEINS 51, 397–408 (2003)
Sumikoshi, K., Terada, T., Nakamura, S., Shimizu, K.: A Fast Protein-Protein Docking Algorithm Using Series Expansion in Terms of Spherical Basis Functions. In: Genome Informatics Workshop, vol. 16(2), pp. 161–173 (2005)
Janin, J.: CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 52(1), 1–122 (2003)
Gabb, H., et al.: Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997)
Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings of the IEEE 93, 216–231 (2005) special issue on Program Generation, Optimization, and Platform Adaptation.
Fitch, B., et al.: Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L. IBM Research Report: RC23688, IBM Research Division (2005)
Lorenz, J., et al.: Vectorization techniques for the Blue Gene/L double FPU. IBM Journal of Research and Development 49, 437–446 (2005)
Eleftheriou, M., et al.: A Volumetric FFT for BlueGene/L. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp. 194–203. Springer, Heidelberg (2003)
Eleftheriou, M., et al.: Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 795–803. Springer, Heidelberg (2005)
FFTE: A Fast Fourier Transform Package, http://www.ffte.jp/
Dongarra, J., Luszczek, P.: Introduction to the HPCChallenge Benchmark Suite. ICL Technical Report, ICL-UT-05-01 (2005)
Brigham, E.O.: The fast Fourier transform and its applications. Prentice-Hall Inc., Upper Saddle River, NJ, USA (1988)
Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)
Wait, C.D.: IBM PowerPC 440 FPU with complex-arithmetic extensions. IBM Journal of Research and Development 49, 249–254 (2005)
Linzer, E.N., Feig, E.: Implementation of Efficient FFT Algorithms on Fused Multiply-Add Architectures. IEEE Trans. Signal Processing 41, 93–107 (1993)
Goedecker, S.: Fast Radix 2,3,4 and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping Multiply-Add Instructions. SIAM J. Sci. Comput. 18, 1605–1611 (1997)
Nukada, A.: FFTSS: A High Performance Fast Fourier Transform Library. In: ICASSP 2006. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. III, pp. 980–983. IEEE Computer Society Press, Los Alamitos (2006)
Takahashi, D.: A Blocking Algorithm for Parallel 1-D FFT on Shared-Memory Parallel Computers. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002. LNCS, vol. 2367, pp. 380–389. Springer, Heidelberg (2002)
Bailey, D.H.: FFT’s in External or Hierarchical Memory. Journal of Supercomputing 4(1), 23–35 (1990)
Ohmacht, M., et al.: Blue Gene/L compute chip: Memory and Ethernet subsystem. IBM Journal of Research and Development 49, 255–264 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nukada, A., Hourai, Y., Nishida, A., Akiyama, Y. (2007). High Performance 3D Convolution for Protein Docking on IBM Blue Gene. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_84
Download citation
DOI: https://doi.org/10.1007/978-3-540-74742-0_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74741-3
Online ISBN: 978-3-540-74742-0
eBook Packages: Computer ScienceComputer Science (R0)