Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High Performance 3D Convolution for Protein Docking on IBM Blue Gene

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4742))

Abstract

We have developed a high performance 3D convolution library for Protein Docking on IBM Blue Gene. The algorithm is designed to exploit slight locality of memory access in 3D-FFT by making full use of a cache memory structure. The 1D-FFT used in the 3D convolution is optimized for PowerPC 440 FP2 processors. The number of SIMOMD instructions is minimized by simultaneous computation of two 1D-FFTs. The high performance 3D convolution library achieves up to 2.16 Gflops (38.6% of peak) per node. The total performance of a shape complementarity search is estimated at 7 Tflops with the 4-rack Blue Gene system (4096 nodes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sussman, J., et al.: Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D. Biol. Crystallogr. D54, 1078–1084 (1998), http://www.rcsb.org/pdb/

    Article  Google Scholar 

  2. Gardiner, E., Willett, P., Artymiuk, J.: GAPDOCK: A genetic algorithm approach to protein docking in CAPRI round 1. Proteins: Structure, Function, and Genetics 52(1), 10–14 (2003)

    Article  Google Scholar 

  3. Chen, H., Zhou, H.: Prediction of Interface Residues in Protein-Protein Complexes by a Consensus Neural Network Method: Test Against NMR Data. PROTEINS 61, 21–35 (2005)

    Article  Google Scholar 

  4. Connolly, M.L.: Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface. Biopolymers 25(7), 1229–1247 (1986)

    Article  Google Scholar 

  5. Kuntz, I., et al.: A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology 161(2), 269–288 (1992)

    Article  Google Scholar 

  6. Norel, R., Petrey, D., Wolfson, H.J., Nussinov, R.: Examination of shape complementarity in docking of unbound proteins. Proteins 36(3), 307–317 (1999)

    Article  Google Scholar 

  7. Katchalski-Katzir, et al.: Molecular surface recognition: Deterimination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. 89(6), 2195–2199 (1992)

    Article  Google Scholar 

  8. Chen, R., Weng, Z.: Docking Unbound Proteins Using Shape Complementarity, Desolvation, and Electrostatics. Proteins 47, 281–294 (2002)

    Article  Google Scholar 

  9. Chen, R., Weng, Z.: A Novel Shape Complementarity Scoring Function for Protein-Protein Docking. PROTEINS 51, 397–408 (2003)

    Article  Google Scholar 

  10. Sumikoshi, K., Terada, T., Nakamura, S., Shimizu, K.: A Fast Protein-Protein Docking Algorithm Using Series Expansion in Terms of Spherical Basis Functions. In: Genome Informatics Workshop, vol. 16(2), pp. 161–173 (2005)

    Google Scholar 

  11. Janin, J.: CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 52(1), 1–122 (2003)

    Article  MathSciNet  Google Scholar 

  12. Gabb, H., et al.: Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997)

    Article  Google Scholar 

  13. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings of the IEEE 93, 216–231 (2005) special issue on Program Generation, Optimization, and Platform Adaptation.

    Article  Google Scholar 

  14. Fitch, B., et al.: Blue Matter: Strong Scaling of Molecular Dynamics on Blue Gene/L. IBM Research Report: RC23688, IBM Research Division (2005)

    Google Scholar 

  15. Lorenz, J., et al.: Vectorization techniques for the Blue Gene/L double FPU. IBM Journal of Research and Development 49, 437–446 (2005)

    Google Scholar 

  16. Eleftheriou, M., et al.: A Volumetric FFT for BlueGene/L. In: Pinkston, T.M., Prasanna, V.K. (eds.) HiPC 2003. LNCS (LNAI), vol. 2913, pp. 194–203. Springer, Heidelberg (2003)

    Google Scholar 

  17. Eleftheriou, M., et al.: Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 795–803. Springer, Heidelberg (2005)

    Google Scholar 

  18. FFTE: A Fast Fourier Transform Package, http://www.ffte.jp/

  19. Dongarra, J., Luszczek, P.: Introduction to the HPCChallenge Benchmark Suite. ICL Technical Report, ICL-UT-05-01 (2005)

    Google Scholar 

  20. Brigham, E.O.: The fast Fourier transform and its applications. Prentice-Hall Inc., Upper Saddle River, NJ, USA (1988)

    Google Scholar 

  21. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Google Scholar 

  22. Wait, C.D.: IBM PowerPC 440 FPU with complex-arithmetic extensions. IBM Journal of Research and Development 49, 249–254 (2005)

    Google Scholar 

  23. Linzer, E.N., Feig, E.: Implementation of Efficient FFT Algorithms on Fused Multiply-Add Architectures. IEEE Trans. Signal Processing 41, 93–107 (1993)

    Article  MATH  Google Scholar 

  24. Goedecker, S.: Fast Radix 2,3,4 and 5 Kernels for Fast Fourier Transformations on Computers with Overlapping Multiply-Add Instructions. SIAM J. Sci. Comput. 18, 1605–1611 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nukada, A.: FFTSS: A High Performance Fast Fourier Transform Library. In: ICASSP 2006. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. III, pp. 980–983. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  26. Takahashi, D.: A Blocking Algorithm for Parallel 1-D FFT on Shared-Memory Parallel Computers. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds.) PARA 2002. LNCS, vol. 2367, pp. 380–389. Springer, Heidelberg (2002)

    Google Scholar 

  27. Bailey, D.H.: FFT’s in External or Hierarchical Memory. Journal of Supercomputing 4(1), 23–35 (1990)

    Article  Google Scholar 

  28. Ohmacht, M., et al.: Blue Gene/L compute chip: Memory and Ethernet subsystem. IBM Journal of Research and Development 49, 255–264 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan Stojmenovic Ruppa K. Thulasiram Laurence T. Yang Weijia Jia Minyi Guo Rodrigo Fernandes de Mello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nukada, A., Hourai, Y., Nishida, A., Akiyama, Y. (2007). High Performance 3D Convolution for Protein Docking on IBM Blue Gene. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds) Parallel and Distributed Processing and Applications. ISPA 2007. Lecture Notes in Computer Science, vol 4742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74742-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74742-0_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74741-3

  • Online ISBN: 978-3-540-74742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics