Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards MKDA: A Knowledge Discovery Assistant for Researches in Medicine

  • Conference paper
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing (AI*IA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4733))

Included in the following conference series:

  • 1609 Accesses

Abstract

Nowadays doctors are generating a huge amount of raw data. These data, analyzed with data mining techniques, could be sources of new knowledge. Unluckily such tasks need skilled data analysts, and not so much researchers in Medicine are also data mining experts. In this paper we present a web based system for knowledge discovery assistance in Medicine able to advice a medical researcher in this kind of tasks. The user must define only the experiment specifications in a formal language we have defined. The system GUI helps users in their composition. Then the system plans a Knowledge Discovery Process (KDP) on the basis of rules in a knowledge base. Finally the system executes the KDP and produces a model as result. The system works through the co-operation of different web services specialized in different tasks. The system is still under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fayyad, U.M., Haussler, D., Smith, P., Uthurusamy, R.: Advance in Knowledge Discovery and Data Mining. In: AKDDM, AAAI/MIT Press (1996)

    Google Scholar 

  2. Aleven, V., Koedinger, K.R.: An effective metacognitive strategy: Learning by doing and explaining with a computer-based cognitive tutor. Cognitice Science 26, 147–179 (2002)

    Article  Google Scholar 

  3. Craw, S., Sleeman, D., Graner, N., Rissakis, M., Sharma, S.: Consultant: Providing Advice for the Machine Learning Toolbox. In: Research and Development in Expert Systems IX: Proc. Expert Systems, 12th Ann. Technical Conf. British Computer Soc. Specialist Group on Expert Systems, pp. 5–23 (1992)

    Google Scholar 

  4. Brazdil, P.B., Scares, C., Da Costa, J.P.: Ranking learning algorithms: using IBL and meta-learning on accuracy and time results Machine Learning. 50(3), 251–277 (2003)

    Google Scholar 

  5. Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study. In: ICTAI 2000. Ictai 12th IEEE International Conference on Tools with Artificial Intelligence, p. 206. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  6. Jiawei, Fu, H.Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A., Stefanovic, N., Xia, B., Zaiane, O.R.: DBMiner: A System for Mining Knowledge in Large Relational Databases. In: KDD 1996. Proc. 1996 Int’l Conf. on Data Mining and Knowledge Discovery, pp. 250–255 (1996)

    Google Scholar 

  7. Wirth, R., Shearer, C., Grimmer, U., Reinartz, T., Schlosser, J., Breitner, C., Engels, R., Lindner, G.: Towards Process-Oriented Tool Support for KDD. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 55–64. Springer, Heidelberg (1997)

    Google Scholar 

  8. Bernstein, A., Provost, F., Hill, S.: Toward Intelligent Assistance for a Data Mining Process: An Ontology-Based Approach for Cost-Sensitive Classification. Proc. of IEEE Transactions on Knowledge and Data Engineering 17(4), 503–518 (2005)

    Article  Google Scholar 

  9. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid prototyping for complex data mining tasks. In: KDD 2006. Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York (2006)

    Google Scholar 

  10. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco, CA, USA (2000)

    Google Scholar 

  11. (Alice), http://www.alicebot.org/

  12. Euler, T.: Publishing Operational Models of Data Mining Case Studies. In: ICDM. Proc. of the Workshop on Data Mining Case Studies at the 5th IEEE International Conference on Data Mining, pages 99. IEEE Computer Society Press, Los Alamitos

    Google Scholar 

  13. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: Implementing the Semantic Web Recommendations. Tech. Rep. HPL-2003-146, HP Laboratories Bristol (2003)

    Google Scholar 

  14. Helfin, J. (eds.): Web Ontology Language (OWL): Use Cases and Requirements. W3C Recommendation (February 10, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Basili Maria Teresa Pazienza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cannella, V., Russo, G., Peri, D., Pirrone, R., Ardizzone, E. (2007). Towards MKDA: A Knowledge Discovery Assistant for Researches in Medicine. In: Basili, R., Pazienza, M.T. (eds) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. AI*IA 2007. Lecture Notes in Computer Science(), vol 4733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74782-6_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74782-6_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74781-9

  • Online ISBN: 978-3-540-74782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics