Abstract
Deception dectection is one of the most difficult problems in affect recognition and expression research area. Recently, non-verbal methods of detecting deception have appeared to be promising. Thomas[1] presented a proof-of-concept study based on the blob analysis of some suspects’ interviews and mock experiments video clips. In this paper, we present our recent research work in the direction of developing an automated deception detection system. We propose a blob motion pattern analysis approach to solve this problem.
Supported by the National Natural Science Foundation of China (60433030).
Similar content being viewed by others
References
Meservy, T.O., Jensen, M.L., Kruse, J., et al.: Deception detection through automatic, unobtrusive analysis of nonverbal behavior. IEEE Intelligent Systems 20(5), 36–43 (2005)
Buller, D.B., Burgoon, J.K.: Interpersonal deception theory. Communication Theory 6, 203–242 (1996)
George, J.F., Biros, D.P., Burgoon, J.K., Nunamaker Jr., J.F.: Training Professionals to Detect Deception. In: NSF/NIJ Symposium on Intelligence and Security Informatics, Tucson, AZ (2003)
Mafia game introduction, http://en.wikipedia.org/wiki/Mafia_Game.htm
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xia, F., Wang, H., Huang, J. (2007). Deception Detection Via Blob Motion Pattern Analysis. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds) Affective Computing and Intelligent Interaction. ACII 2007. Lecture Notes in Computer Science, vol 4738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74889-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-540-74889-2_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74888-5
Online ISBN: 978-3-540-74889-2
eBook Packages: Computer ScienceComputer Science (R0)