Abstract
High-level and longer-term activity recognition has great potentials in areas such as medical diagnosis and human behavior modeling. So far however, activity recognition research has mostly focused on low-level and short-term activities. This paper therefore makes a first step towards recognition of high-level activities as they occur in daily life. For this we record a realistic 10h data set and analyze the performance of four different algorithms for the recognition of both low- and high-level activities. Here we focus on simple features and computationally efficient algorithms as this facilitates the embedding and deployment of the approach in real-world scenarios. While preliminary, the experimental results suggest that the recognition of high-level activities can be achieved with the same algorithms as the recognition of low-level activities.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, Springer, Heidelberg (2006)
Minnen, D., Starner, T., Essa, I., Isbell, C.: Discovering characteristic actions from on-body sensor data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)
Wyatt, D., Philipose, M., Choudhury, T.: Unsupervised Activity Recognition Using Automatically Mined Common Sense. In: Proc. AAAI 2005 (2005)
Huynh, T., Schiele, B.: Unsupervised discovery of structure in activity data using multiple eigenspaces. In: Proc. LoCA, Dublin, Ireland (2006)
Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Tröster, G.: Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)
Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common Sense Based Joint Training of Human Activity Recognizers. In: Proc. IJCAI (2007)
Laerhoven, K.V., Gellersen, H.W: Spine versus porcupine: A study in distributed wearable activity recognition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)
Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 44–51. Springer, Heidelberg (2005)
Clarkson, B., Pentland, A.: Unsupervised clustering of ambulatory audio and video. In: icassp (1999)
Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)
Liao, L., Kautz, H., Fox, D.: Learning and inferring Transportation Routines. In: Proc. AAAI (2004)
Krumm, J., Horvitz, E.: Predestination: Inferring Destinations from Partial Trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, Springer, Heidelberg (2006)
Marmasse, N., Schmandt, C.: Location-Aware Information Delivery with ComMotion. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 157–171. Springer, Heidelberg (2000)
Laerhoven, K.V., Gellersen, H., Malliaris, Y.: Long-Term Activity Monitoring with a Wearable Sensor Node. In: Body Sensor Networks Workshop (2006)
Lo, B., Thiemjarus, S., King, R., Yang, G.: Body Sensor Network–A Wireless Sensor Platform for Pervasive Healthcare Monitoring. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, Springer, Heidelberg (2005)
Kern, N.: Multi-Sensor Context-Awareness for Wearable Computing. PhD thesis, TU Darmstadt (2005)
Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proc. IAAI (2005)
Huynh, T., Schiele, B.: Towards less supervision in activity recognition from wearable sensors. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)
Oliver, N., Horvitz, E., Garg, A.: Layered representations for human activity recognition. In: Proc. ICMI (2002)
Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannford, B.: A hybrid discriminative/generative approach for modeling human activities. In: Proc. IJCAI, Edinburgh, United Kingdom, August 2005, pp. 766–772 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huỳnh, T., Blanke, U., Schiele, B. (2007). Scalable Recognition of Daily Activities with Wearable Sensors. In: Hightower, J., Schiele, B., Strang, T. (eds) Location- and Context-Awareness. LoCA 2007. Lecture Notes in Computer Science, vol 4718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75160-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-75160-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75159-5
Online ISBN: 978-3-540-75160-1
eBook Packages: Computer ScienceComputer Science (R0)