Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scalable Recognition of Daily Activities with Wearable Sensors

  • Conference paper
Location- and Context-Awareness (LoCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4718))

Included in the following conference series:

Abstract

High-level and longer-term activity recognition has great potentials in areas such as medical diagnosis and human behavior modeling. So far however, activity recognition research has mostly focused on low-level and short-term activities. This paper therefore makes a first step towards recognition of high-level activities as they occur in daily life. For this we record a realistic 10h data set and analyze the performance of four different algorithms for the recognition of both low- and high-level activities. Here we focus on simple features and computationally efficient algorithms as this facilitates the embedding and deployment of the approach in real-world scenarios. While preliminary, the experimental results suggest that the recognition of high-level activities can be achieved with the same algorithms as the recognition of low-level activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Minnen, D., Starner, T., Essa, I., Isbell, C.: Discovering characteristic actions from on-body sensor data. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

    Google Scholar 

  3. Wyatt, D., Philipose, M., Choudhury, T.: Unsupervised Activity Recognition Using Automatically Mined Common Sense. In: Proc. AAAI 2005 (2005)

    Google Scholar 

  4. Huynh, T., Schiele, B.: Unsupervised discovery of structure in activity data using multiple eigenspaces. In: Proc. LoCA, Dublin, Ireland (2006)

    Google Scholar 

  5. Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Tröster, G.: Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

    Google Scholar 

  6. Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common Sense Based Joint Training of Human Activity Recognizers. In: Proc. IJCAI (2007)

    Google Scholar 

  7. Laerhoven, K.V., Gellersen, H.W: Spine versus porcupine: A study in distributed wearable activity recognition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)

    Google Scholar 

  8. Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Google Scholar 

  9. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 44–51. Springer, Heidelberg (2005)

    Google Scholar 

  10. Clarkson, B., Pentland, A.: Unsupervised clustering of ambulatory audio and video. In: icassp (1999)

    Google Scholar 

  11. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)

    Article  Google Scholar 

  12. Liao, L., Kautz, H., Fox, D.: Learning and inferring Transportation Routines. In: Proc. AAAI (2004)

    Google Scholar 

  13. Krumm, J., Horvitz, E.: Predestination: Inferring Destinations from Partial Trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Marmasse, N., Schmandt, C.: Location-Aware Information Delivery with ComMotion. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 157–171. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Laerhoven, K.V., Gellersen, H., Malliaris, Y.: Long-Term Activity Monitoring with a Wearable Sensor Node. In: Body Sensor Networks Workshop (2006)

    Google Scholar 

  16. Lo, B., Thiemjarus, S., King, R., Yang, G.: Body Sensor Network–A Wireless Sensor Platform for Pervasive Healthcare Monitoring. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, Springer, Heidelberg (2005)

    Google Scholar 

  17. Kern, N.: Multi-Sensor Context-Awareness for Wearable Computing. PhD thesis, TU Darmstadt (2005)

    Google Scholar 

  18. Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proc. IAAI (2005)

    Google Scholar 

  19. Huynh, T., Schiele, B.: Towards less supervision in activity recognition from wearable sensors. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

    Google Scholar 

  20. Oliver, N., Horvitz, E., Garg, A.: Layered representations for human activity recognition. In: Proc. ICMI (2002)

    Google Scholar 

  21. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannford, B.: A hybrid discriminative/generative approach for modeling human activities. In: Proc. IJCAI, Edinburgh, United Kingdom, August 2005, pp. 766–772 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jeffrey Hightower Bernt Schiele Thomas Strang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huỳnh, T., Blanke, U., Schiele, B. (2007). Scalable Recognition of Daily Activities with Wearable Sensors. In: Hightower, J., Schiele, B., Strang, T. (eds) Location- and Context-Awareness. LoCA 2007. Lecture Notes in Computer Science, vol 4718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75160-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75160-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75159-5

  • Online ISBN: 978-3-540-75160-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics