Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Determining the Contour of Cylindrical Biological Objects Using the Directional Field

  • Conference paper
Computer Recognition Systems 2

Part of the book series: Advances in Soft Computing ((AINSC,volume 45))

Abstract

In the paper we present the employment of the direction field for contour detection and the segmentation of cylindrical objects, especially an eye iris. We propose a method of calculating the direction field for this kind of objects and present the obtained results. An analysis of the possibility of extending this approach on objects of different kinds is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlberg J.: A system for face localization and facial feature extraction, Technical Report (No. LiTH-ISY-R-2172), Linkoping University, Sweden, 2002.

    Google Scholar 

  2. Ajdari A. R., Faez K. Qaragozlou N.: Fast Circle Detection Using Gradient Pair Vectors, VIIth Digital Image Computing: Techniques and Applications, Sydney, 2003.

    Google Scholar 

  3. Donoho D., Huo X.: Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data. In Proceedings of SPIE, volume 4119, July 2000.

    Google Scholar 

  4. Donoho D., Huo X.: Beamlets and multiscale image analysis. In: T.J. Barth, T. Chan, and R. Haimes (Eds.), Springer Lecture Notes in Computational Science and Engineer-ing 2001, 149–196.

    Google Scholar 

  5. Duda R.O., Hart P.E.: Use of the Hough Transformation to detect lines and curves in pictures, Communications of the Association of Computing Machinery 15 (1972) 11–15.

    Google Scholar 

  6. Gorodnichy D., Malik S., Roth G.: Affordable 3D face tracking using projective vision. In Proc. Intern. Conf. On Vision Interface (VI’ 2002), Calgary, May 2002.

    Google Scholar 

  7. Hough P. V. C: Method and means for recognizing complex patterns, U.S. Patent 3069654, 1962

    Google Scholar 

  8. Kass M., Witkin A., Terzopoulos D.: Snake: active contour models, Int. J. Computer Vision, 1(4), 1987, 321–331

    Article  Google Scholar 

  9. Koprowski R., Wrobel Z.: Analysis of the inclination of elongated biological objects-microtubules, sent to Medical Image Analysis, 2006.

    Google Scholar 

  10. Koprowski R., Wrobel Z.: Estimation of the properties of algorithms for measuring the inclination angle of elongated objects, sent to Image and Vision Computing, 2006.

    Google Scholar 

  11. Korepanov A. O. Central lines extraction on the diagnostic vessel images using the methods of wavelet-analysis and differential geometry, 7 th, International Conference on Pattern Recognition and Image Analysis: New Information Technologies, PRIA-7-2004, Volume III, 740–743.

    Google Scholar 

  12. Lacroix V., Acheroy M.: Feature-extraction using the constrained gradient. ISPRS Journal of Photogrammetry and Remote Sensing, 53(2):April 1998.

    Google Scholar 

  13. Libor M.: Recognition of Human Iris Patterns for Biometric Identification, PhD, Institute of Automation, Chinese Academy of Sciences, 2003.

    Google Scholar 

  14. Lien J.J., Kanade T., Cohn J., Li C.: Detection, tracking, and classification of subtle changes in facial expression, Journal of Robotics and Autonomous Systems, Vol. 31, 131–146, 2000.

    Article  Google Scholar 

  15. Mian Z., Kassim A. A., Mannan M. A., Texture Analysis Of Machined Surfaces Using A New Hough Transform, Proceedings of Texture 2002-The 2nd international workshop on texture analysis and synthesis, pp. 35–41, June 1st, 2002, Copenhagen

    Google Scholar 

  16. Rosenfeld S. Thurston M., Edge and curve detection for visual scene analysis, IEEE Trans. Comput. C-20, pp. 562–569, 1971.

    Article  Google Scholar 

  17. Serra. J.: Image Analysis and Mathematical Morphology. Volume 2: Theoretical Ad-vances. Academic Press, 1988.

    Google Scholar 

  18. Song J., Cai M., Lyu M. R., Cai S.: A New Approach for Line Recognition in Large-size Images Using Hough Transform, International Conference on Pattern Recognition 2005.

    Google Scholar 

  19. Tian Y.L., Kanade T., Cohn J.F.: Recognizing action units for facial expression analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 97–116, 2001

    Article  Google Scholar 

  20. Ting-jen Y.: A Qualitative Profile-based Approach to Edge Detection (Near-Optimal Detection of Geometric Objects by Fast Multiscale Methods), Phd, Department of Com-puter Science New York University, September 2003.

    Google Scholar 

  21. Xu C., Prince J. L.: Gradient vector flow: a new external force for Snake, IEEE Proc. Conf. on CVPR’97, 1997, 66–71

    Google Scholar 

  22. Yang M., Ahuja N., Kriegman D.: Detecting faces in mages: A survey. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(1): 2002, 34–58.

    Article  Google Scholar 

  23. Yuanxin Zhu, Bridget Carragher, David Kriegman, and Clinton S. Potter Perceptual Or-ganization as a Method for Detection and Selection of Filamentous Structures in Highly Noisy Images Acquired by Cryoelectron Microscopy Journal of Structural Biology, 2001.

    Google Scholar 

  24. Yuille A., Hallinan P., Cohen D.: Feature Extraction from Faces Using Deformable Templates, International Journal of Computer Vision, 8(2): 99–111, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koprowski, R., Wrobel, Z. (2007). Determining the Contour of Cylindrical Biological Objects Using the Directional Field. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds) Computer Recognition Systems 2. Advances in Soft Computing, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75175-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75175-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75174-8

  • Online ISBN: 978-3-540-75175-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics