In the previous chapters, we studied movement data from several perspectives: the application opportunities, the type of analytical questions, the modeling requirements, and the challenges for mining. Moreover, the complexity of the overall analysis process was pointed out several times. The analytical questions posed by the end user need to be translated into several tasks such as choose analysis methods, prepare the data for application of these methods, apply the methods to the data, and interpret and evaluate the results obtained. To clarify these issues, let us consider an example involving the following analytical questions:
-
Describe the collective movement behavior of the population (or a given subset) of entiti es during the whole time period (or a given interval)
-
Find the entity subsets and time periods with the collective movement behavior corresponding to a given pattern
-
Compare the collective movement behaviors of the entities on given time intervals
It is evident that there is a huge distance between these analytical questions and the complex computations needed to answer them. In fact, answering the above questions requires combining several forms of knowledge and the cooperation among solvers of different nature: we need spatiotemporal reasoning supporting deductive inferences along with inductive mechanisms, in conjunction with statistical methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Baglioni and F. Turini. MQL: An algebraic query language for knowledge discovery. In Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence (AI*IA’03), pp. 225–236. Springer, 2003.
F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando, R. Perego, and R. Trasarti. ConQueSt: A constraint-based querying system for exploratory pattern discovery. In Proceedings of the International Conference on Data Engineering (ICDE’06), p. 159. IEEE, 2006.
F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Optimized level-wise frequent pattern mining with monotone constraints. In Proceedings of the International Conference on Data Mining (ICDM’03), pp. 11–18, 2003.
F. Bonchi and C. Lucchese. Extending the state of the art of constraint-based frequent pattern discovery. Data and Knowledge Engineering, 60(2):377–399, 2007.
M. Cai, D. Keshwani, and P. Revesz. Parametric rectangles: A model for querying and animation of spatiotemporal databases. In Proceedings of the 7th International Conference on Extending Database Technology (EDBT’00), pp. 430–444. Springer, 2000.
T. Calders, B. Goetals, and A. Prado. Integrating pattern mining in relational databases. In Proceedings of the Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’06), pp. 454–461. Springer, 2006.
T. Calders, L.V.S. Lakshmanan, R.T. Ng, and J. Paredaens. Expressive power of an algebra for data mining. ACM Transactions on Database Systems, 31(4):1169–1214, 2006.
C.X. Chen and C. Zaniolo. Universal temporal extensions for database languages. In Proceedings of the 15th International Conference on Data Engineering (ICDE’99), pp. 428–437. IEEE, 1999.
C.X. Chen and C. Zaniolo. SQLST: A spatiotemporal data model and query language. In Proceedings of the 19th International Conference on Conceptual Modeling (ER’00), pp. 96–111. Springer, 2000.
J. Chomicki and P. Revesz. Constraint-based interoperability of spatiotemporal databases. GeoInformatica, 3(3):211–243, 1999.
J. Chomicki and P. Revesz. A geometric framework for specifying spatiotemporal objects. In Proceedings of the 6th International Workshop on Temporal Representation and Reasoning (TIME’99), pp. 41–46. IEEE, 1999.
B. Clarke. A calculus of individuals based on ‘connection’. Notre Dame Journal of Formal Logic, 22(3):204–218, 1981.
CLEMENTINE, http://www.spss.com/clementine/.
E. Clementini, P.D. Felice, and P. van Oosterom. A small set of formal topological relationships for end-user interaction. In Proceedings of the 3rd International Symposium on Advances in Spatial Databases (SSD’93), pp. 277–295. Springer, 1993.
N.V. de Weghe. Representing and Reasoning about Moving Objects: A Qualitative Approach. PhD thesis, Ghent University, Belgium, 2004.
N.V. de Weghe, A. Cohn, G. de Tré, and P.D. Maeyer. A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics, 35(1):97–120, 2006.
N.V. de Weghe, A. Cohn, P.D. Maeyer, and F. Witlox. Representing moving objects in computer based expert systems: The overtake event example. Expert Systems with Applications, 29(4):977–983, 2005.
N.V. de Weghe, G.D. Tré, B. Kuijpers, and P.D. Maeyer. The double-cross and the generalization concept as a basis for representing and comparing shapes of polylines. In Proceedings of the International Workshop on Semantic-based Geographical Information Systems (SeBGIS’05), pp. 1087–1096. Springer, 2005.
S. Dzeroski. Multi-relational data mining: An introduction. SIGKDD Exploration Newsletter, 5(1):1–16, 2003.
M. Egenhofer and R. Franzosa. Point-set topological spatial relations. International Journal of Geographical Information Systems, 5(2):161–174, 1991.
M. Egenhofer and R. Golledge. Time in Geographic Space, Report on the Specialist Meeting of Research Initiative 10. Technical Report 94-9, National Center for Geographic Information and Analysis, Univeristy of California, 1994.
M.J. Egenhofer. Reasoning about binary topological relations. In Proceedings of the International Symposium Advances in Spatial Databases (SSD’91), pp. 143–160. Springer, 1991.
M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatiotemporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296, 1999.
M. Erwig and M. Schneider. The honeycomb model of spatiotemporal partitions. In Proceedings of the International Workshop on Spatiotemporal Database Management (STDBM99), pp. 39–59. Springer, 1999.
M. Erwig and M. Schneider. Spatiotemporal predicates. IEEE Transactions on Knowledge and Data Engineering, 14(4):881–901, 2002.
A. Frank. Qualitative spatial reasoning: Cardinal directions as an example. International Journal of Geographic Information Systems, 10(3):269–290, 1996.
A. Frank, S. Grumbach, R. Güting, C. Jensen, M. Koubarakis, N. Lorentzos, Y. Manopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, T. Sellis, B. Theodoulidis, and P. Widmayer. CHOROCHRONOS: A research network for spatiotemporal database systems. SIGMOD Record, 28:12–21, 1999.
C. Freksa. Using orientation information for qualitative spatial reasoning. In Spatiotemporal Reasoning, Vol. 639. Lecture Notes in Computer Science, pp. 162–178. Springer, 1992.
A. Galton. Towards a qualitative theory of movement. In Spatial Information Theory, pp. 377–396, 1995.
F. Giannotti, G. Manco, and F. Turini. Specifying mining algorithms with iterative user-defined aggregates. IEEE Transactions on Knowledge and Data Engineering, 16(10):1232–1246, 2004.
R. Goyal. Similarity Assessment for Cardinal Directions Between Extended Spatial Obejcts. PhD thesis, The University of Maine, 2000.
T. Griffiths, A.A.A. Fernandes, N.W. Paton, and R. Barr. The tripod spatio-historical data model. Data Knowledge and Engineering, 49(1):23–65, 2004.
S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. The DEDALE prototype. In Constraint Databases, pp. 365–382. Springer, 2000.
S. Grumbach, P. Rigaux, and L. Segoufin. On the orthographic dimension of constraint databases. In Proceedings of the 7th International Conference on Database Theory (ICDT’99), pp. 199–216. Springer, 1999.
S. Grumbach, P. Rigaux, and L. Segoufin. Spatiotemporal Data Handling with Constraints. GeoInformatica, 5(1):95–115, 2001.
R. Güting, M. Böhlen, M. Erwig, C. Jensen, N. Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation for representing and querying moving objects. ACM Transactions on Database Systems, 25(1):1–42, 2000.
R. Güting and M. Schneider. Realm-based spatial data types: The ROSE algebra. The Very Large Data Bases Journal, 4(2):243–286, 1995.
R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
S. Haesevoets. Modelling and Querying Spatiotemporal Data. Doctor’s thesis, Hasselt University, 2005.
J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining query language for relational databases. In Proceedings of the Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD’96), 1996.
T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications ACM, 39(11):58–64, 1996.
T. Imielinski and A. Virmani. MSQL: A query language for database mining. Data Mining and Knowledge Discovery, 3(4):373–408, 1999.
T. Johnson, L. Lakshmanan, and R. Ng. The 3W model and algebra for unified data mining. In Proceedings of the International Conference on Very Large Data Bases (VLDB’00), pp. 21–32, 2000.
K. Koperski, J. Adhikary, and J. Han. Spatial data mining: Progress and challenges. Survey paper. In Proceedings of the Workshop on Research Issues in Data Mining and Knowledge (DMKD’96), 1996.
M. Koubarakis, T.K. Sellis, A.U. Frank, S. Grumbach, R.H. Güting, C.S. Jensen, N.A. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, B. Theodoulidis, and N. Tryfona (eds.). Spatiotemporal Databases: The CHOROCHRONOS Approach. Springer, 2003.
B. Kuijpers, J. Paredaens, and D.V. Gucht. Towards a theory of movie database queries. In Proceedings of the 7th International Workshop on Temporal Representation and Reasoning (TIME’00), pp. 95–102. IEEE, 2000.
S. Lee and L.D. Raedt. An algebra for inductive query evaluation. In Proceedings of the International Conference on Data Mining (ICDM’03), pp. 147–154. IEEE, 2003.
L. Libkin. Some remarks on variable independence, closure, and orthographic dimension in constraint databases. SIGMOD Record, 28(4):24–28, 1999.
D. Malerba, A. Appice, and M. Ceci. A data mining query language for knowledge discovery in a geographical information system. In Database Support for Data Mining Applications, pp. 95–116. 2004.
D. Malerba, F. Esposito, A. Lanza, F. Lisi, and A. Appice. Empowering a GIS with inductive learning capabilities: The case of INGENS. Journal of Computers, Environment, and Urban Systems, 27:265–281, 2003.
P. Mancarella, A. Raffaetà, C. Renso, and F. Turini. Integrating knowledge representation and reasoning in geographical information systems. International Journal of Geographical Information Science, 18(4):417–446, 2004.
H. Mannila and H. Toivonen. Levelwise search and border of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.
R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules. Data Mining and Knowledge Discovery, 2(2):195–224, 1998.
T. Mitchell. Machine Learning. Mc Graw-Hill, 1997.
H. Mokhtar, J. Su, and O.H. Ibarra. On moving object queries. In Proceedings of the 21st Symposium on Principles of Database Systems (PODS’02), pp. 188–198. ACM, 2002.
M. Nanni, F.T.A. Raffaetà, and C. Renso. A declarative framework for reasoning on spatiotemporal data. In Spatiotemporal Databases. Flexible Querying and Reasonig, pp. 75–104. Springer, 2004.
R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimization of constrained association rules. In Proceedings of the Conference on Management of Data (SIGMOD’98), pp. 13–24, 1998.
Object Database Management Group. http://www.odmg.org.
OLE DB DM Specifications, http://www.microsoft.com/data/oledb/dm/.
OpenGIS Simple Features Specification For OLE/COM. The file can be downloaded at http://www.opengis.org/techno/specs/99-050.pdf.
D. Papadias and Y. Theodoridis. Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographic Information Science, 11(2):111–138, 1997.
C. Parent, S. Spaccapietra, and E. Zimányi. Spatiotemporal conceptual models: Data structures + space + time. In C.B. Medeiros, (ed.), Proceedings of the 7th International Workshop on Geographic Information Systems (GIS’99), pp. 26–33. ACM, 1999.
C. Parent, S. Spaccapietra, and E. Zimányi. The MurMur project: Modeling and querying multi-representation spatiotemporal databases. Information Systems, 31(8):733–769, 2006.
J. Pei and J. Han. Can we push more constraints into frequent pattern mining? In Proceedings of the Conference on Knowedge Discovery and Data Mining (KDD’00), pp. 350–354. ACM, 2000.
J. Pei, J. Han, and L. Lakshmanan. Mining frequent itemsets with convertible constraints. In Proceedings of the International Conference on Data Engineering (ICDE’01), pp. 433–442. IEEE, 2001.
N. Pelekis. STAU: A Spatiotemporal Extension for the ORACLE DBMS. PhD Thesis, UMIST, 2002.
N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos. Hermes – A framework for location-based data management. In Proceedings of the International Conference on Extending Database Technology (EDBT’06), pp. 1130–1134. Springer, 2006.
D. Peuquet and Z. Ci-Xiang. An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. Pattern Recognition, 20(1):65–74, 1987.
L.D. Raedt. A logical database mining query language. In Proceedings of the International Conference on Inductive Logic Programming (ILP’00), pp. 78–92. Springer, 2000.
L.D. Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query answering. In Proceedings of the International Conference on Data Mining (ICDM’02), pp. 123–130. IEEE, 2002.
A. Raffaetà and T. Frühwirth. Spatiotemporal annotated constraint logic programming. In Proceedings of the International Symposium on Practical Aspects of Declarative Languages (PADL’01), pp. 259–273. Springer, 2001.
A. Raffaetà, C. Renso, and F. Turini. Qualitative spatial reasoning in a logical framework. In Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence (AI*IA’03), pp. 78–90. Springer, 2003.
D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and connection. In Proceedings of the International Conference on Knowledge Representation and Reasoning (KR’92), pp. 165–176. Morgan Kaufmann, 1992.
P. Revesz. Introduction to Constraint Databases. Springer, 2002.
P. Revesz and M. Cai. Efficient querying and animation of periodic spatiotemporal databases. Annals of Mathematics and Artificial Intelligence, 36(4):437–457, 2002.
A. Romei, S. Ruggieri, and F. Turini. KDDML: A middleware language and system for knowledge discovery in databases. Data Knowledge and Engineering, 57(2):179–220, 2006.
A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In Proceedings of the 13th International Conference on Data Engineering, pp. 422–432. IEEE, 1997.
S. Spaccapietra, (ed.). Spatiotemporal Data Models and Languages (DEXA’99). IEEE, 1999.
J. Su, H. Xu, and O.H. Ibarra. Moving objects: Logical relationships and queries. In Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases (SSTD’01), pp. 3–19. Springer, 2001.
G. Trajcevski, O. Wolfson, S. Chamberlain, and F. Zhang. The geometry of uncertainty in moving objects databases. In Proceedings of the International Conference on Extending Database Technology (EDBT’02), pp. 233–250. Springer, 2002.
H. Wang and C. Zaniolo. ATLaS: A native extension of sql for data mining. In Proceedings of the SIAM Conference on Data Mining (SDM’03), 2003.
M. Worboys. A unified model for spatial and temporal information. Computer Journal, 37:26–34, 1994.
M.F. Worboys and M. Duckham. GIS – A Computing Perspective, 2nd Edition. CRC Press, 2004.
C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in recursive rules: The LDL++ Approach. In Proceedings of International Conference on Deductive and Object-Oriented Databases (DOOD’93), pp. 204–221. Springer, 1993.
K. Zimmermann and C. Freksa. Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence, 6(1):49–58, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Manco, G., Baglioni, M., Giannotti, F., Kuijpers, B., Raffaetà, A., Renso, C. (2008). Querying and Reasoning for Spatiotemporal Data Mining. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-75177-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75176-2
Online ISBN: 978-3-540-75177-9
eBook Packages: Computer ScienceComputer Science (R0)