Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Compositionality for Markov Reward Chains with Fast Transitions

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4748))

Included in the following conference series:

Abstract

A parallel composition is defined for Markov reward chains with fast transitions and for discontinuous Markov reward chains. In this setting, compositionality with respect to the relevant aggregation preorders is established. For Markov reward chains with fast transitions the preorders are τ-lumping and τ-reduction. Discontinuous Markov reward chains are ‘limits’ of Markov reward chains with fast transitions, and have related notions of lumping and reduction. In total, four compositionality results are shown. In addition, the two parallel operators are related by a continuity property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Howard, R.A.: Semi-Markov and Decision Processes. Wiley, Chichester (1971)

    MATH  Google Scholar 

  2. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)

    MATH  Google Scholar 

  5. Ciardo, G., Muppala, J., Trivedi, K.S.: On the solution of GSPN reward models. Performance Evaluation 12, 237–253 (1991)

    Article  MATH  Google Scholar 

  6. Wu, S.-H., Smolka, S., Stark, E.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems. IEEE Transactions on Software Engineering 17(10), 1093–1108 (1991)

    Article  MathSciNet  Google Scholar 

  8. Markovski, J., Trčka, N.: Lumping Markov chains with silent steps. In: QEST’06, Riverside, pp. 221–230. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  9. Markovski, J., Trčka, N.: Aggregation methods for Markov reward chains with fast and silent transitions. Technical Report CS 07/08, Technische Universiteit Eindhoven (2007)

    Google Scholar 

  10. Trčka, N.: Silent Steps in Transition Systems and Markov Chains. PhD thesis, Eindhoven University of Technology (2007)

    Google Scholar 

  11. Doeblin, W.: Sur l’équation Matricielle A(t + s) = A(t) ·A(s) et ses Applications aux Probabilités en Chaine. Bull. Sci. Math. 62, 21–32 (1938)

    MATH  Google Scholar 

  12. Coderch, M., Willsky, A., Sastry, S., Castanon, D.: Hierarchical aggregation of singularly perturbed finite state Markov processes. Stochastics 8, 259–289 (1983)

    MATH  MathSciNet  Google Scholar 

  13. Ammar, H., Huang, Y., Liu, R.: Hierarchical models for systems reliability, maintainability, and availability. IEEE Transactions on Circuits and Systems 34(6), 629–638 (1987)

    Article  Google Scholar 

  14. Buchholz, P.: Markovian process algebra: composition and equivalence. In: Proc. PAPM 1994, Erlangen, Universität Erlangen-Nürnberg, pp. 11–30 (1994)

    Google Scholar 

  15. Kemeny, J., Snell, J.: Finite Markov chains. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  16. Sokolova, A., de Vink, E.: On relational properties of lumpability. In: Proc. 4th PROGRESS symposium on Embedded Systems, Utrecht (2003)

    Google Scholar 

  17. Delebecque, F., Quadrat, J.: Optimal control of Markov chains admitting strong and weak interactions. Automatica 17, 281–296 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Doob, J.: Stochastic Processes. Wiley, Chichester (1953)

    MATH  Google Scholar 

  19. Chung, K.: Markov Chains with Stationary Probabilities. Springer, Heidelberg (1967)

    MATH  Google Scholar 

  20. Hille, E., Phillips, R.: Functional Analysis and Semi-Groups. AMS, Washington, DC (1957)

    Google Scholar 

  21. Nicola, V.: Lumping in Markov reward processes. IBM Research Report RC 14719, IBM (1989)

    Google Scholar 

  22. Markovski, J., Sokolova, A., Trčka, N.: de Vink, E.: Compositionality for Markov chains with fast transitions. Technical Report CS 07/17, Technische Universiteit Eindhoven (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katinka Wolter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markovski, J., Sokolova, A., Trčka, N., de Vink, E.P. (2007). Compositionality for Markov Reward Chains with Fast Transitions. In: Wolter, K. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2007. Lecture Notes in Computer Science, vol 4748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75211-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75211-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75210-3

  • Online ISBN: 978-3-540-75211-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics