Abstract
A parallel composition is defined for Markov reward chains with fast transitions and for discontinuous Markov reward chains. In this setting, compositionality with respect to the relevant aggregation preorders is established. For Markov reward chains with fast transitions the preorders are τ-lumping and τ-reduction. Discontinuous Markov reward chains are ‘limits’ of Markov reward chains with fast transitions, and have related notions of lumping and reduction. In total, four compositionality results are shown. In addition, the two parallel operators are related by a continuity property.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Howard, R.A.: Semi-Markov and Decision Processes. Wiley, Chichester (1971)
Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)
Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)
Ciardo, G., Muppala, J., Trivedi, K.S.: On the solution of GSPN reward models. Performance Evaluation 12, 237–253 (1991)
Wu, S.-H., Smolka, S., Stark, E.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176(1-2), 1–38 (1997)
Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems. IEEE Transactions on Software Engineering 17(10), 1093–1108 (1991)
Markovski, J., Trčka, N.: Lumping Markov chains with silent steps. In: QEST’06, Riverside, pp. 221–230. IEEE Computer Society Press, Los Alamitos (2006)
Markovski, J., Trčka, N.: Aggregation methods for Markov reward chains with fast and silent transitions. Technical Report CS 07/08, Technische Universiteit Eindhoven (2007)
Trčka, N.: Silent Steps in Transition Systems and Markov Chains. PhD thesis, Eindhoven University of Technology (2007)
Doeblin, W.: Sur l’équation Matricielle A(t + s) = A(t) ·A(s) et ses Applications aux Probabilités en Chaine. Bull. Sci. Math. 62, 21–32 (1938)
Coderch, M., Willsky, A., Sastry, S., Castanon, D.: Hierarchical aggregation of singularly perturbed finite state Markov processes. Stochastics 8, 259–289 (1983)
Ammar, H., Huang, Y., Liu, R.: Hierarchical models for systems reliability, maintainability, and availability. IEEE Transactions on Circuits and Systems 34(6), 629–638 (1987)
Buchholz, P.: Markovian process algebra: composition and equivalence. In: Proc. PAPM 1994, Erlangen, Universität Erlangen-Nürnberg, pp. 11–30 (1994)
Kemeny, J., Snell, J.: Finite Markov chains. Springer, Heidelberg (1976)
Sokolova, A., de Vink, E.: On relational properties of lumpability. In: Proc. 4th PROGRESS symposium on Embedded Systems, Utrecht (2003)
Delebecque, F., Quadrat, J.: Optimal control of Markov chains admitting strong and weak interactions. Automatica 17, 281–296 (1981)
Doob, J.: Stochastic Processes. Wiley, Chichester (1953)
Chung, K.: Markov Chains with Stationary Probabilities. Springer, Heidelberg (1967)
Hille, E., Phillips, R.: Functional Analysis and Semi-Groups. AMS, Washington, DC (1957)
Nicola, V.: Lumping in Markov reward processes. IBM Research Report RC 14719, IBM (1989)
Markovski, J., Sokolova, A., Trčka, N.: de Vink, E.: Compositionality for Markov chains with fast transitions. Technical Report CS 07/17, Technische Universiteit Eindhoven (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Markovski, J., Sokolova, A., Trčka, N., de Vink, E.P. (2007). Compositionality for Markov Reward Chains with Fast Transitions. In: Wolter, K. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2007. Lecture Notes in Computer Science, vol 4748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75211-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-75211-0_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75210-3
Online ISBN: 978-3-540-75211-0
eBook Packages: Computer ScienceComputer Science (R0)