Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cluster Identification in Nearest-Neighbor Graphs

  • Conference paper
Algorithmic Learning Theory (ALT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4754))

Included in the following conference series:

  • 2359 Accesses

Abstract

Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are “identified”: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict “optimal” values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bettstetter, C.: On the minimum node degree and connectivity of a wireless multihop network. In: Proceedings of MobiHoc, pp. 80–91 (2002)

    Google Scholar 

  • Biau, G., Cadre, B., Pelletier, B.: A graph-based estimator of the number of clusters. ESIAM: Prob. and Stat. 11, 272–280 (2007)

    MathSciNet  MATH  Google Scholar 

  • Bollobas, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Bollobas, B., Riordan, O.: Percolation. Cambridge Universiy Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Brito, M., Chavez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Stat. Probabil. Lett. 35, 33–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Kunniyur, S.S., Venkatesh, S.S.: Threshold functions, node isolation, and emergent lacunae in sensor networks. IEEE Trans. Inf. Th. 52(12), 5352–5372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, M., Hein, M., von Luxburg, U.: Cluster identification in nearest-neighbor graphs. Technical Report 163, MPI for Biological Cybernetics, Tübingen (2007)

    Google Scholar 

  • Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  • Santi, P., Blough, D.: The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Trans. Mobile Computing 02(1), 25–39 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maier, M., Hein, M., von Luxburg, U. (2007). Cluster Identification in Nearest-Neighbor Graphs. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2007. Lecture Notes in Computer Science(), vol 4754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75225-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75225-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75224-0

  • Online ISBN: 978-3-540-75225-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics