Abstract
Inspired by the wonderful design and implementation of the Prolog language afforded by the Warren Abstract Machine (WAM), this paper describes an extended logical language which can compute larger realms of first-order logic, based upon theories for finitary geometric logic. The paper describes a Geolog language for expressing first-order geometric logic in tidy closed form, a mathematical Skolem Machine that computes the language, and an implementation prototype that intimately mimics the abstract machine, and which also reformulates expensive bottom-up inference into efficient top-down inference. There are promising mathematical theorem proving applications for geometric logic systems, collected on the website [5]. The emphasis of this paper is theory, abstract machine design and direct implementation of the abstract machine.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ait-Kaci, H.: Warrens’s Abstract Machine, A Tutorial Reconstruction. School of Computing Science (February 18, 1999)
Bezem, M.A., Coquand, T.: Automating Coherent Logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)
Bezem, M.A.: On the Undecidability of Coherent Logic. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 6–13. Springer, Heidelberg (2005)
Blass, A.: Topoi and computation. Bulletin of the EATCS 36, 57–65 (1998)
Fisher, J.R.: Geolog website, www.csupomona.edu/~jrfisher/www/geolog/
Fisher, J.R., Bezem, M.A.: Query Completeness of Skolem Machine Computations. In: Proceedings MCU 2007 (to appear, 2007)
Johnstone, P.: Sketches of an Elephant: a topos theory compendium, vol. 2, Oxford Logic Guides 44, OUP (2002)
Lloyd, J.W.: Foundations of Logic Programming. revised edn. Springer, Berlin (1987)
Manthey, R., Bry, F.: SATCHMO: A Theorem Prover Implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) 9th International Conference on Automated Deduction. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)
de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Berlin (2006)
Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM 12(1), 23–41 (1965)
Skolem, Th.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen, Skrifter I, vol. 4, pp. 1–36, Det Norske Videnskaps-Akademi (1920). Also in Jens Erik Fenstad, editor, Selected Works in Logic by Th. Skolem, pp. 103–136, Universitetsforlaget, Oslo (1970)
Warren, D.H.D.: An abstract Prolog instruction set. Technical Note 309, SRI International, Menlo Park, CA (October 1983)
Sutcliffe, G., Suttner, C.: The CADE ATP System Competition. Link available at: www.cs.miami.edu/~tptp/CASC/
Wielemaker, J.: SWI-Prolog Reference Manual. Link available at: www.swi-prolog.org
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fisher, J., Bezem, M. (2007). Skolem Machines and Geometric Logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds) Theoretical Aspects of Computing – ICTAC 2007. ICTAC 2007. Lecture Notes in Computer Science, vol 4711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75292-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-75292-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75290-5
Online ISBN: 978-3-540-75292-9
eBook Packages: Computer ScienceComputer Science (R0)