Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Sampling for MITL Specifications

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4763))

Abstract

Real-time temporal logic reasoning about trajectories of physical systems necessitates models of time which are continuous. However, discrete time temporal logic reasoning is computationally more efficient than continuous time. Moreover, in a number of engineering applications only discrete time models are available for analysis. In this paper, we introduce a framework for testing MITL specifications on continuous time signals using only discrete time analysis. The motivating idea behind our approach is that if the dynamics of the signal fulfills certain conditions and the discrete time signal robustly satisfies the MITL specification, then the corresponding continuous time signal should also satisfy the same MITL specification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pillage, L., Rohrer, R., Visweswariah, C.: Electronic Circuit and System Simulation Methods. McGraw-Hill, New York (1995)

    Google Scholar 

  2. Ogata, K.: Modern Control Engineering, 4th edn. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  3. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 255–299 (1990)

    Article  Google Scholar 

  4. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43, 116–146 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inf. 62, 1–28 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Google Scholar 

  7. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  9. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Runtime Verification. ENTCS, vol. 113, pp. 145–162. Elsevier, Amsterdam (2005)

    Google Scholar 

  10. Bensalem, S., Bozga, M., Krichen, M., Tripakis, S.: Testing conformance of real-time applications with automatic generation of observers. In: Proceedings of Runtime Verification Workshop, Barcelona, Spain (2004)

    Google Scholar 

  11. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 487–492 (2004)

    Google Scholar 

  12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006)

    Google Scholar 

  13. Pnueli, A.: Development of hybrid systems. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) Formal Techniques in Real-Time and Fault-Tolerant Systems. LNCS, vol. 863, pp. 77–85. Springer, Heidelberg (1994)

    Google Scholar 

  14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  15. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub. Co./MIT Press, Amsterdam (1990)

    Google Scholar 

  16. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In: Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 390–401. IEEE Computer Society Press, Washington, D.C (1990)

    Chapter  Google Scholar 

  17. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

    Google Scholar 

  18. Wood, G.R., Zhang, B.P.: Estimation of the Lipschitz constant of a function. Journal of Global Optimization 8, 91–103 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approximations of timed systems. In: Proceedings of the 1st ACM & IEEE International Conference on Formal Methods and Models for Co-Design, pp. 163–171 (2003)

    Google Scholar 

  20. de Alfaro, L., Manna, Z.: Verification in continuous time by discrete reasoning. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 292–306. Springer, Heidelberg (1995)

    Google Scholar 

  21. Furia, C.A., Rossi, M.: Integrating discrete and continuous time metric temporal logics through sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 215–229. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

    Google Scholar 

  23. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Auto. Cont. 52, 782–798 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-François Raskin P. S. Thiagarajan

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fainekos, G.E., Pappas, G.J. (2007). Robust Sampling for MITL Specifications. In: Raskin, JF., Thiagarajan, P.S. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2007. Lecture Notes in Computer Science, vol 4763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75454-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75454-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75453-4

  • Online ISBN: 978-3-540-75454-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics