Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Completeness and Decidability in Sequence Logic

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4790))

  • 600 Accesses

Abstract

Sequence logic is a parameterized logic where the formulas are sequences of formulas of some arbitrary underlying logic. The sequence formulas are interpreted in certain linearly ordered sets of models of the underlying logic. This interpretation induces an entailment relation between sequence formulas which strongly depends on which orderings one wishes to consider. Some important classes are: all linear orderings, all dense linear orderings and all (or some specific) wellorderings.

For all these classes one can ask for a sound and complete proof system for the entailment relation, as well as for its decidability. For the class of dense linear orderings and all linear orderings we give sound and complete proof systems which also yield decidability (assuming that the underlying logic is sound, complete and decidable). We formulate some open problems on the entailment relation in the case of wellorderings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Brown, D.J., Suszko, R.: Abstract logics. Dissertationes Mathematicae 102, 9–42 (1973)

    MathSciNet  Google Scholar 

  3. Büchi, J.R., Siefkes, D.: VDM 1988. LNM, vol. 328. Springer, Heidelberg (1988)

    Google Scholar 

  4. Demri, S., Rabinovich, A.: The complexity of temporal logic with until and since over ordinals (submitted to LPAR 2007)

    Google Scholar 

  5. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  6. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)

    MathSciNet  Google Scholar 

  7. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of the ACM 32(3), 733–749 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Szajnkenig, W.: Sequence Logic. PhD thesis, Department of Informatics, University of Bergen, forthcoming

    Google Scholar 

  10. Tarski, A.: Logic, Semantics, Metamathematics. Oxford University Press, New York (1956)

    Google Scholar 

  11. Walicki, M., Bezem, M.A., Szajnkenig, W.: A strongly complete logic of dense time intervals. In: Alechina, N., Ågotnes, T. (eds.) Proceedings of the Workshop on Logics for Resource-Bounded Agents, ESSLLI, Malaga, Spain (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nachum Dershowitz Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezem, M., Langholm, T., Walicki, M. (2007). Completeness and Decidability in Sequence Logic. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75560-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75558-6

  • Online ISBN: 978-3-540-75560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics