Abstract
We introduce the class of Symmetric MV-algebras. Such algebras have a suitable behavior with respect to a family of MV-polynomials. It turns out that the class of Symmetric MV-algebras can be characterized as the class of MV-algebras having homomorphic image in the variety generated by a single MV-chain with pā+ā1 elements, where pā=ā1 or p is a prime number. Also, using symmetric MV-algebras, we provide a new characterization of the above mentioned varieties.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambrosio, R., Lettieri, A.: A classification of bipartite MValgebras. Math. JaponĀ 38, 111ā117 (1993)
Belluce, L.P.: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. J. Math.Ā 38(6), 1356ā1379 (1986)
Belluce, L.P.: Ī±-complete MV-algebras. In: Hƶhle, U., Klement, E.P. (eds.) Non Classical Logics and Their Application to Fuzzy Sets, pp. 7ā22. Kluwer Academy Publisher, Dordrecht (1992)
Cella, C., Lettieri, A.: Preboolean MV-algebras as Bipartire MV-algebras. StochasticaĀ XIII-1, 31ā36 (1992)
Cignoli, R., DāOttaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer Academic Publishers, Dordrecht (2000)
Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian ā-groups. Studia LogicaĀ 53, 417ā432 (1994)
Di Nola, A., Lettieri, A.: Equational Characterization of All Varieties of MV-algebras. Journal of AlgebraĀ 221, 463ā474 (1999)
Di Nola, A., Lettieri, A.: One Chain Generated Varieties of MV-algebras e. Journal of AlgebraĀ 225, 667ā697 (2000)
Di Nola, A., Liguori, F., Sessa, S.: Using Maximal Ideals In The Classification of MV-algebras. Portugaliae MathematicaĀ 50(1) (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
Ā© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Belluce, L.P., Di Nola, A., Lettieri, A. (2007). Symmetric MV-Algebras. In: Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. (eds) Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science(), vol 4460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75939-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-75939-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75938-6
Online ISBN: 978-3-540-75939-3
eBook Packages: Computer ScienceComputer Science (R0)