Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4460))

  • 629 Accesses

Abstract

We introduce the class of Symmetric MV-algebras. Such algebras have a suitable behavior with respect to a family of MV-polynomials. It turns out that the class of Symmetric MV-algebras can be characterized as the class of MV-algebras having homomorphic image in the variety generated by a single MV-chain with pā€‰+ā€‰1 elements, where pā€‰=ā€‰1 or p is a prime number. Also, using symmetric MV-algebras, we provide a new characterization of the above mentioned varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambrosio, R., Lettieri, A.: A classification of bipartite MValgebras. Math. JaponĀ 38, 111ā€“117 (1993)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Belluce, L.P.: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Canad. J. Math.Ā 38(6), 1356ā€“1379 (1986)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Belluce, L.P.: Ī±-complete MV-algebras. In: Hƶhle, U., Klement, E.P. (eds.) Non Classical Logics and Their Application to Fuzzy Sets, pp. 7ā€“22. Kluwer Academy Publisher, Dordrecht (1992)

    Google ScholarĀ 

  4. Cella, C., Lettieri, A.: Preboolean MV-algebras as Bipartire MV-algebras. StochasticaĀ XIII-1, 31ā€“36 (1992)

    MATHĀ  Google ScholarĀ 

  5. Cignoli, R., Dā€™Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of many-valued Reasoning. Kluwer Academic Publishers, Dordrecht (2000)

    BookĀ  MATHĀ  Google ScholarĀ 

  6. Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian ā„“-groups. Studia LogicaĀ 53, 417ā€“432 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Di Nola, A., Lettieri, A.: Equational Characterization of All Varieties of MV-algebras. Journal of AlgebraĀ 221, 463ā€“474 (1999)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Di Nola, A., Lettieri, A.: One Chain Generated Varieties of MV-algebras e. Journal of AlgebraĀ 225, 667ā€“697 (2000)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Di Nola, A., Liguori, F., Sessa, S.: Using Maximal Ideals In The Classification of MV-algebras. Portugaliae MathematicaĀ 50(1) (1993)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefano Aguzzoli Agata Ciabattoni Brunella Gerla Corrado Manara Vincenzo Marra

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belluce, L.P., Di Nola, A., Lettieri, A. (2007). Symmetric MV-Algebras. In: Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. (eds) Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science(), vol 4460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75939-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75939-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75938-6

  • Online ISBN: 978-3-540-75939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics