Abstract
It is shown that a conservative expansion of infinite valued Łukasiewicz logic by new connectives univocally determined by their axioms does not necessarily have a complete semantics in the real interval [0,1]. However, such extensions are always complete with respect to valuations in a family of MV-chains. Rational Łukasiewicz logic being the largest one that has a complete semantics in [0,1]. In addition, this logic does not admit expansions by axiomatic implicit connectives that are not already explicit. Similar results are obtained for n-valued Łukasiewicz logic and for the logic of abelian lattice ordered groups. These and related results are obtained by the study of compatible operations implicitly defined by identities in the varieties of MV-algebras and abelian ℓ-groups; the pertaining algebraic results having independent interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguzzoli, S., Mundici, D.: Weirstrass approximation theorem and Łukasiewicz formulas with one quantified variable. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications of Multiple Valued Logic, pp. 315–335. Physica-Verlag, Springer, Heidelberg (2003)
Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Hájek, P. (ed.) Proceedings of Gödel 96. Lecture Notes in Logic 6, pp. 23–33. Springer, Heidelberg (1996)
Baaz, M., Veith, H.: Interpolation in fuzzy logic. Archive for Mathematical Logic 38, 461–498 (1999)
Baker, K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)
Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Heidelberg (1971)
Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoirs of the AMS 396 (1989)
Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, Heidelberg (1981)
Caicedo, X.: Implicit connectives of algebraizable logics. Studia Logica 78, 155–170 (2004)
Caicedo, X., Cignoli, R.: An algebraic approach to intuitionistic connectives. Journal of Symbolic Logic 60, 1620–1636 (2001)
Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued reasoning. Kluwer Academic Publishers, Dordrecht (2000)
Chang, C.C.: A new proof of the completeness of Łukasiewicz axioms. Trans. A.M.S. 93, 74–80 (1959)
Chang, C.C., Keisler, J.: Model Theory, 3rd edn. North Holland, Amsterdam (1990)
Bĕhounek, L., Cintula, P.: Fuzzy logics as the logics of chains. Fuzzy Sets and Systems 157(5), 604–610 (2006)
Galli, A., Lewin, R., Sagastume, M.: The logic of equilibrium and abelian lattice ordered groups. Arch. Math. Logic 43, 141–158 (2004)
Gerla, B.: Rational Łukasiewicz logic and DMV-algebras. Neural Networks World 11, 579–584 (2001)
Komori, Y.: Super-Łukasiewicz propositional logics. Nagoya Math. J. 84, 119–133 (1981)
Lacava, F., Saeli, D.: Sul model-completamento della teoría delle Ł-catene. Bolletino Unione Matematica Italiana 14-A(5), 107–110 (1977)
Marker, D.: Model Theory, An Introduction. Springer, Heidelberg (2002)
Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and Hypersequent Calculi for Abelian and Łukasiewicz Logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)
Montagna, F.: An algebraic approach to propositional fuzzy logic. Journal of Logic Language and Information 9, 91–124 (2000)
Mundici, D.: Interpretation of AF C-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63 (1986)
Robinson, A.: Complete theories. North Holland, Amsterdam (1956)
Van den Dries, L.: Tame topology and o-minimal structures. Cambridge U. Press, Cambridge (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Caicedo, X. (2007). Implicit Operations in MV-Algebras and the Connectives of Łukasiewicz Logic. In: Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. (eds) Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science(), vol 4460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75939-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-75939-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75938-6
Online ISBN: 978-3-540-75939-3
eBook Packages: Computer ScienceComputer Science (R0)