Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 90))

Signature verification is a common task in forensic document analysis. It's aim is to determine whether a questioned signature matches known signature samples. From the viewpoint of automating the task it can be viewed as one that involves machine learning from a population of signatures. There are two types of learning tasks to be accomplished: person-independent (or general) learning and person-dependent (or special) learning. General learning is from a population of genuine and forged signatures of several individuals, where the differences between genuines and forgeries across all individuals are learnt. The general learning model allows a questioned signature to be compared to a single genuine signature. In special learning, a person's signature is learnt from multiple samples of only that person's signature — where within-person similarities are learnt. When a sufficient number of samples are available, special learning performs better than general learning (5% higher accuracy). With special learning, verification accuracy increases with the number of samples. An interactive software implementation of signature verification involving both the learning and performance phases is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. .Osborn, A.: Questioned Documents. Nelson Hall Pub (1929)

    Google Scholar 

  2. . Robertson, E.W.: Fundamentals of Document Examination. Nelson-Hall (1991)

    Google Scholar 

  3. . Bradford, R.R., Bradford, R.: Introduction to Handwriting Examination and Identification. Nelson-Hall (1992)

    Google Scholar 

  4. . Hilton, O.: Scientific Examination of Questioned Documents. CRC Press (1993)

    Google Scholar 

  5. . Huber, R., Headrick, A.: Handwriting Identification: Facts and Fundamentals. CRC Press (1999)

    Google Scholar 

  6. . Slyter, S.A.: Forensic Signature Examination. Charles C. Thomas Pub (1995)

    Google Scholar 

  7. . Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

    Google Scholar 

  8. . Srihari, S.N., Xu, A., Kalera, M.K.: Learning strategies and classification meth-ods for off-line signature verification, Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition (IWHR), IEEE Computer Society Press (2004) 161-166

    Google Scholar 

  9. . Winston, P.: Learning structural descriptions from examples. In Winston, P., ed.: The Psychology of Computer Vision. McGraw-Hill (1975) 157-210

    Google Scholar 

  10. Leclerc, F., Plamondon, R.: Automatic signature verification: the state of the art, 1989-1993. International Journal of Pattern Recognition and Artificial In-telligence 8(3) (1994) 643-660

    Article  Google Scholar 

  11. . Guo, J.K., Doermann, D., Rosenfield, A.: Local correspondences for detecting random forgeries, Proceedings of the International Conference on Document Analysis and Pattern Recognition (1997) 319-323

    Google Scholar 

  12. Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1) (2000) 63-84

    Article  Google Scholar 

  13. Kalera, M.K., Zhang, B., Srihari, S.N.: Off-line signature verification and iden-tification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence 18(7) (2004) 1339-1360

    Article  Google Scholar 

  14. Fang, B., Leung, C.H., Tang, Y.Y., Tse, K.W., Kwok, P.C.K., Wong, Y.K.: Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition 36 (2003) 91-101

    Article  MATH  Google Scholar 

  15. . Srihari, S.N., Cha, S., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences (2002) 856-872

    Google Scholar 

  16. . Srinivasan, H., Beal, M., Srihari, S.N.: Machine learning approaches for person verification and identification. Volume 5778., Proc. SPIE: Sensors, and Com-mand, Control, Communications, and Intelligence Technologies for Homeland Security (2005) 574-586

    Google Scholar 

  17. Deng, P.S., Liao, H.Y., Ho, C., Tyan, H.R.: Wavelet-base off-line handwritten signature verification. Computer Vision Image Understanding 76(3) (1999) 173-190

    Google Scholar 

  18. . Sabourin, R.: Off-line signature verification: Recent advances and perspectives. BSDIA (1997) 84-98

    Google Scholar 

  19. Coetzer, J., B.M. Herbst, du Preez, J.: Off-line signature verification using the discrete radon transform and a hidden Markov model. Journal on Applied Signal Processing 4(2004) 559-571

    Article  Google Scholar 

  20. Ferrer, M.A., Alonso, J.B., Travieso, C.M.: Off-line geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6) (2005) 993-997

    Article  Google Scholar 

  21. Srikantan, G., Lam, S., Srihari, S.: Gradient based contour encoding for char-acter recognition. Pattern Recognition 7(1996) 1147-1160

    Article  Google Scholar 

  22. . Zhang, B., Srihari, S.N.: Analysis of handwriting individuality using handwrit-ten words, Proceedings of the Seventh International Conference on Document Analysis and Recognition, IEEE Computer Society Press (2003) 1142-1146

    Google Scholar 

  23. . Zhang, B., Srihari, S.N., Huang, C.: Word image retrieval using binary features. In Smith, E.H.B., Hu, J., Allan, J., eds.: SPIE. Volume 5296. (2004) 45-53

    Google Scholar 

  24. Zhang, B., Srihari, S.: Properties of binary vector dissimilarity measures. Cary, North Carolina (September, 2003)

    Google Scholar 

  25. Scott, G.L., Longuett-Higgins, H.: An algorithm for associating the features of 2 images. Proceedings of the Royal Society of London Series B (Biological) 244(1991) 21-26

    Article  Google Scholar 

  26. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Analysis and Machine Intelligence 11(1989) 567-585

    Article  MATH  Google Scholar 

  27. . Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)

    Google Scholar 

  28. . Srihari, S.N., Zhang, B., Tomai, C., Lee, S., Shi, Z., Shin, Y.C.: A system for handwriting matching and recognition, Proc. Symposium on Document Image Understanding Technology (2003) 67-75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srihari, S.N., Srinivasan, H., Chen, S., Beal, M.J. (2008). Machine Learning for Signature Verification. In: Marinai, S., Fujisawa, H. (eds) Machine Learning in Document Analysis and Recognition. Studies in Computational Intelligence, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76280-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76280-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76279-9

  • Online ISBN: 978-3-540-76280-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics