Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparing Timoshenko Beam to Energy Beam for Fitting Noisy Data

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

  • 3308 Accesses

Abstract

In this paper we develop highly flexible  Timoshenko beam model for tracking large deformations in noisy data. We demonstrate that by neglecting some physical properties of Timoshenko beam, classical energy beam can be derived. The comparison of these two models in terms of their robustness and precision against noisy data is given. We demonstrate that Timoshenko beam model is more robust and precise for tracking large deformations in the presence of clutter and partial occlusions. The experiments using both synthetic and real image data are performed. In synthetic images we fit both models to noisy data and use Monte Carlo simulation to analyze their performance. In real images we track deformations of the pole vault, the rat whiskers and the car antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Cohen, L., Cohen, I.: Deformable models for 3-d medical images using finite elements and balloons. In: Conference on Computer Vision and Pattern Recognition, pp. 592–598 (1992)

    Google Scholar 

  3. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 703–714 (1991)

    Article  Google Scholar 

  4. Metaxas, D.T.D.: Constrained deformable superquadrics and nonrigid motion tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(6), 580–591 (1993)

    Article  Google Scholar 

  5. Gibson, S., Mirtich, B.: A survey of deformable modeling in computer graphics. Technical report, Mitsubishi Electric Research Lab, Cambridge, MA (1997)

    Google Scholar 

  6. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  7. Metaxas, D.: Physics-Based Deformable Models: Applications to Computer Vision, Graphics, and Medical Imaging. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  8. Lee, Y., Terzopoulos, D., Walters, K.: Realistic modeling for facial animation. In: SIGGRAPH 1995. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 55–62. ACM Press, New York (1995)

    Chapter  Google Scholar 

  9. Essa, I., Sclaroff, S., Pentland, A.: Physically-based modeling for graphics and vision. In: Martin, R. (ed.) Directions in Geometric Computing. Information Geometers, U.K (1993)

    Google Scholar 

  10. Sclaroff, S., Pentland, A.P.: Physically-based combinations of views: Representing rigid and nonrigid motion. Technical Report 1994-016 (1994)

    Google Scholar 

  11. Pentland, A.: Automatic extraction of deformable part models. International Journal of Computer Vision 4(2), 107–126 (1990)

    Article  Google Scholar 

  12. Delingette, H., Hebert, M., Ikeuchi, K.: Deformable surfaces: A free-form shape representation. SPIE Geometric Methods in Computer Vision 1570, 21–30 (1991)

    Google Scholar 

  13. Nastar, C., Ayache, N.: Frequency-based nonrigid motion analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(11) (1996)

    Google Scholar 

  14. O’Brien, J.F., Cook, P.R., Essl, G.: Synthesizing sounds from physically based motion. In: Fiume, E. (ed.) SIGGRAPH 2001. Computer Graphics Proceedings, pp. 529–536 (2001)

    Google Scholar 

  15. Tsap, L., Goldgof, D., Sarkar, S.: Fusion of physically-based registration and deformation modeling for nonrigid motion analysis (2001)

    Google Scholar 

  16. Bartoli, A., Zisserman, A.: Direct Estimation of Non-Rigid Registration. In: British Machine Vision Conference, Kingston, UK (2004)

    Google Scholar 

  17. Timoshenko, S., MacCullogh, G.: Elements of Strength in Materials, 3rd edn., van Nostrand. New York (1949)

    Google Scholar 

  18. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: A survey. Foundations and Trends in Computer Graphics and Vision 1(1), 1–89 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slobodan, I. (2007). Comparing Timoshenko Beam to Energy Beam for Fitting Noisy Data. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics