Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Construction of a Lexical Attribute Knowledge Base

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4798))

Abstract

This paper proposes a method to automatically construct a common-sense attribute knowledge base in Chinese. The method first makes use of word formation information to bootstrap an initial attribute set from a machine readable dictionary and then extending it iteratively on the World Wide Web. The solving of the defining concepts of the attributes is modeled as a resolution problem of selectional preference. The acquired attribute knowledge base is compared to HowNet, a hand-coded lexical knowledge source. Some experimental results about the performance of the method are provided.

This work was supported by the NSFC under Grant No. 60496326 (Basic Theory and Core Techniques of Non Canonical Knowledge).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Woods, W.: What’s in a Link: Foundations for Semantic Networks. Bolt, Beranek and Newman (1975)

    Google Scholar 

  2. Almuhareb, A., Poesio, M.: Attribute-Based and Value-Based Clustering: An Evaluation. In: Proc. of EMNLP 2004, pp. 158–165 (2004)

    Google Scholar 

  3. Dong, Z., Dong, Q.: HowNet and the Computation of Meaning. World Scientific, Singapore (2006)

    Google Scholar 

  4. Amsler, R.: The Structure of the Merriam-Webster Pocket Dictionary (1980)

    Google Scholar 

  5. Chodorow, M., Byrd, R., Heidorn, G.: Extracting semantic hierarchies from a large on-line dictionary. In: Proceedings of the 23rd conference on Association for Computational Linguistics, pp. 299–304 (1985)

    Google Scholar 

  6. Wilks, Y., Fass, D., Guo, C., McDonald, J., Plate, T., Slator, B.: A tractable machine dictionary as a resource for computational semantics. Longman Publishing Group White Plains, NY, USA (1989)

    Google Scholar 

  7. Alshawi, H.: Analysing the dictionary definitions. Computational lexicography for natural language processing table of contents, 153–169 (1989)

    Google Scholar 

  8. Richardson, S., Dolan, W., Vanderwende, L.: MindNet: acquiring and structuring semantic information from text. In: Proceedings of the 17th international conference on Computational linguistics, pp. 1098–1102 (1998)

    Google Scholar 

  9. Ide, N., Veronis, J.: Extracting knowledge bases from machine-readable dictionaries: Have we wasted our time. Proceedings of KB&KS 93, 257–266 (1993)

    Google Scholar 

  10. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th conference on Computational linguistics, vol. 2, pp. 539–545 (1992)

    Google Scholar 

  11. Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pp. 57–64 (1999)

    Google Scholar 

  12. Poesio, M., Ishikawa, T., im Walde, S., Viera, R.: Acquiring lexical knowledge for anaphora resolution. In: LREC. Proceedings of the 3rd Conference on Language Resources and Evaluation (2002)

    Google Scholar 

  13. Grefenstette, G., Nioche, J.: Estimation of English and non-English Language Use on the WWW. Arxiv preprint cs.CL/0006032 (2000)

    Google Scholar 

  14. Zhu, X., Rosenfeld, R.: Improving trigram language modeling with the World Wide Web. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  15. Keller, F., Lapata, M.: Using the web to obtain frequencies for unseen bigrams. Computational Linguistics 29(3), 459–484 (2003)

    Article  Google Scholar 

  16. Brin, S.: Extracting patterns and relations from the world wide web. In: EDBT 1998. WebDB Workshop at 6th International Conference on Extending Database Technology, pp. 172–183 (1998)

    Google Scholar 

  17. Pennacchiotti, M., Pantel, P.: A Bootstrapping Algorithm for Automatically Harvesting Semantic Relations. In: ICoS 2006. Proceedings of Inference in Computational Semantics, Buxton, England (2006)

    Google Scholar 

  18. Chen, H., Tsai, S., Tsai, J.: Mining tables from large scale html texts. In: COLING. 18th International Conference on Computational Linguistics, pp. 166–172 (2000)

    Google Scholar 

  19. Yoshida, M., Torisawa, K., Tsujii, J.: A method to integrate tables of the world wide web. In: WDA 2001. Proceedings of the International Workshop on Web Document Analysis, Seattle, US (2001)

    Google Scholar 

  20. Poesio, M., Almuhareb, A.: Identifying Concept Attributes Using a Classifier. Ann Arbor 100 (2005)

    Google Scholar 

  21. Fujii, H., Croft, W.: A comparison of indexing techniques for Japanese text retrieval. In: Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 237–246. ACM Press, New York (1993)

    Chapter  Google Scholar 

  22. Theeramunkong, T., Sornlertlamvanich, V., Tanhermhong, T., Chinnan, W.: Character cluster based Thai information retrieval. In: Proceedings of the fifth international workshop on on Information retrieval with Asian languages, pp. 75–80 (2000)

    Google Scholar 

  23. Baldwin, T., Tanaka, H.: Balancing up Efficiency and Accuracy in Translation Retrieval. Journal of Natural Language Processing 8(2), 19–37 (2001)

    Google Scholar 

  24. Mosteller, F., Wallace, D.: Inference and Disputed Authorship: The Federalist. Addison-Wesley, Reading (1964)

    MATH  Google Scholar 

  25. Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence 11(11), 95–130 (1999)

    MATH  Google Scholar 

  26. Resnik, P.: Selectional constraints: an information-theoretic model and its computational realization. Cognition 61(1-2), 127–159 (1996)

    Article  Google Scholar 

  27. Siegel, S., Castellan, N.: Nonparametric statistics for the behavioral sciences. McGraw-HiU Book Company, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zili Zhang Jörg Siekmann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, J., Gao, Y., Liu, H., Lu, R. (2007). Automatic Construction of a Lexical Attribute Knowledge Base . In: Zhang, Z., Siekmann, J. (eds) Knowledge Science, Engineering and Management. KSEM 2007. Lecture Notes in Computer Science(), vol 4798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76719-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76719-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76718-3

  • Online ISBN: 978-3-540-76719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics