Abstract
Given a set S of line segments in the plane, we introduce a new family of partitions of the convex hull of S called segment triangulations of S. The set of faces of such a triangulation is a maximal set of disjoint triangles that cut S at, and only at, their vertices. Surprisingly, several properties of point set triangulations extend to segment triangulations. Thus, the number of their faces is an invariant of S. In the same way, if S is in general position, there exists a unique segment triangulation of S whose faces are inscribable in circles whose interiors do not intersect S. This triangulation, called segment Delaunay triangulation, is dual to the segment Voronoi diagram. The main result of this paper is that the local optimality which characterizes point set Delaunay triangulations [10] extends to segment Delaunay triangulations. A similar result holds for segment triangulations with same topology as the Delaunay one.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aichholzer, O., Aurenhammer, F., Hackl, T.: Pre-triangulations and liftable complexes. In: Proc. 22th Annu. ACM Sympos. Comput. Geom., pp. 282–291 (2006)
Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, Elsevier Science Publishers B.V, North-Holland, Amsterdam (1998)
Bern, M.W., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z., Kwang-Ming Hwang, F. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific (1995)
Boissonnat, J.-D., Yvinec, M.: Géométrie algorithmique. Ediscience international, Paris (1995)
Chew, L.P., Kedem, K.: Placing the largest similar copy of a convex polygon among polygonal obstacles. In: Proc. 5th Annu. ACM Sympos. Comput. Geom., pp. 167–174 (1989)
Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Comput. Geom. Theory Appl. 11, 187–208 (1998)
Edelsbrunner, H.: Triangulations and meshes in computational geometry. Acta Numerica, 133–213 (2000)
Everett, H., Lazard, S., Lazard, D., Safey El Din, M.: The voronoi diagram of three lines. In: SCG 2007. Proceedings of the twenty-third annual symposium on Computational geometry, pp. 255–264. ACM Press, New York (2007)
Koltum, V., Sharir, M.: Three dimensional euclidean voronoi diagrams of lines with a fixed number of orientations. SIAM J. Comput. 32(3), 616–642 (2003)
Lawson, C.L.: Software for C 1 surface interpolation. In: Rice, J.R. (ed.) Math. Software III, pp. 161–194. Academic Press, New York (1977)
Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Discrete Comput. Geom. 1, 201–217 (1986)
Mehlhorn, K., Näher, S., Schilz, T., Schirra, S., Seel, M., Seidel, R., Uhrig, C.: Checking geometric programs or verification of geometric structures. In: Proc. 12th Annu. ACM Sympos. Comput. Geom., pp. 159–165 (1996)
Mourrain, B., Técourt, J.-P., Teillaud, M.: On the computation of an arrangement of quadrics in 3d. Comput. Geom. Theory Appl. 30(2), 145–164 (2005)
Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (1992)
Rajan, V.T.: Optimality of the Delaunay triangulation in R d. Discrete Comput. Geom. 12, 189–202 (1994)
Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations - a survey. Discrete Comput. Geom. ( to appear)
Schmitt, D., Spehner, J.-C.: Angular properties of Delaunay diagrams in any dimension. Discrete Comput. Geom. 5, 17–36 (1999)
Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics. Comput. Geom. Theory Appl. 33(1–2), 65–97 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brévilliers, M., Chevallier, N., Schmitt, D. (2007). Triangulations of Line Segment Sets in the Plane. In: Arvind, V., Prasad, S. (eds) FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2007. Lecture Notes in Computer Science, vol 4855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77050-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-77050-3_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77049-7
Online ISBN: 978-3-540-77050-3
eBook Packages: Computer ScienceComputer Science (R0)