Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Depth of Field and Cautious-Greedy Routing in Social Networks

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

Social networks support efficient decentralized search: people can collectively construct short paths to a specified target in the network. Rank-based friendship—where the probability that person u befriends person v is inversely proportional to the number of people who are closer to u than v is—is an empirically validated model of acquaintanceship that provably results in efficient decentralized search via greedy routing, even in networks with variable population densities. In this paper, we introduce cautious-greedy routing, a variant of greedy that avoids taking large jumps unless they make substantial progress towards the target. Our main result is that cautious-greedy routing finds a path of short expected length from an arbitrary source to a randomly chosen target, independent of the population densities. To quantify the expected length of the path, we define the depth of field of a metric space, a new quantity that intuitively measures the “width” of directions that leave a point in the space. Our main result is that cautious-greedy routing finds a path of expected length O(log2 n) in n-person networks that have aspect ratio polynomial in n, bounded doubling dimension, and bounded depth of field. Specifically, in k-dimensional grids under Manhattan distance with arbitrary population densities, the O(log2 n) expected path length that we achieve with the cautious-greedy algorithm improves the best previous bound of O(log3 n) with greedy routing.

Supported in part by grants from Carleton College and by NSF grant CCF-0728779. Thanks to Esteban Arcaute, Seth Gilbert, Ravi Kumar, Jeff Ondich, Andrew Tomkins, and Sergei Vassilvitskii for helpful conversations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Local embeddings of metric spaces. In: Symposium on Theory of Computing (2007)

    Google Scholar 

  2. Abraham, I., Gavoille, C., Goldberg, A., Malkhi, D.: Routing in networks with low doubling dimension. In: International Conference on Distributed Computing Systems (2006)

    Google Scholar 

  3. Adamic, L., Adar, E.: How to search a social network. Social Networks 27(3), 187–203 (2005)

    Article  Google Scholar 

  4. Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient routing in networks with long range contacts. In: International Symposium on Distributed Computing (2001)

    Google Scholar 

  5. Dodds, P., Muhamad, R., Watts, D.: An experimental study of search in global social networks. Science 301, 827–829 (2003)

    Article  Google Scholar 

  6. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned into a small world? Theor. Comp. Sci. 355(1), 96–103 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emergence. In: Symposium on Parallelism in Algorithms and Architectures (2006)

    Google Scholar 

  8. Fraigniaud, P.: Greedy routing in tree-decomposed graphs. In: European Symposium on Algorithms (2005)

    Google Scholar 

  9. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In: Principles of Distributed Computing (2004)

    Google Scholar 

  10. Fraigniaud, P., Lebhar, E., Lotker, Z.: A doubling dimension threshold Θ(loglogn) for augmented graph navigability. In: European Symposium on Algorithms (2006)

    Google Scholar 

  11. Girdzijauskas, S., Datta, A., Aberer, K.: On small world graphs in non-uniformly distributed key spaces. In: International Conference on Data Engineering (2005)

    Google Scholar 

  12. Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  13. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Symposium on Theory of Computing (2000)

    Google Scholar 

  14. Kleinberg, J.: Small-world phenomena and the dynamics of information. In: Advances in Neural Information Processing Systems (2001)

    Google Scholar 

  15. Kleinberg, J.: Complex networks and decentralized search algorithms. In: International Congress of Mathematicians (2006)

    Google Scholar 

  16. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating low-dimensional and hierarchical population networks. In: European Symposium on Algorithms (2006)

    Google Scholar 

  17. Lebhar, E., Schabanel, N.: Close to optimal decentralized routing in long-range contact networks. In: International Colloquium on Automata, Languages and Programming (2004)

    Google Scholar 

  18. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proceedings of the National Academy of Sciences 102(33), 11623–11628 (2005)

    Article  Google Scholar 

  19. Manku, G., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks. In: Symposium on Theory of Computing (2004)

    Google Scholar 

  20. Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) small-world models. In: Principles of Distributed Computing (2004)

    Google Scholar 

  21. Milgram, S.: The small world problem. Psych. Today 1, 61–67 (1967)

    Google Scholar 

  22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge U. Press, Cambridge (1995)

    MATH  Google Scholar 

  23. Şimşek, O., Jensen, D.: Decentralized search in networks using homophily and degree disparity. In: International Joint Conference on Artificial Intelligence (2005)

    Google Scholar 

  24. Slivkins, A.: Distance estimation and object location via rings of neighbors. In: Principles of Distributed Computing (2005)

    Google Scholar 

  25. Watts, D., Dodds, P., Newman, M.: Identity and search in social networks. Science 296, 1302–1305 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbella, D., Kachergis, G., Liben-Nowell, D., Sallstrom, A., Sowell, B. (2007). Depth of Field and Cautious-Greedy Routing in Social Networks. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics